110 research outputs found
A Dual Digraph Approach for Leaderless Atomic Broadcast (Extended Version)
Many distributed systems work on a common shared state; in such systems,
distributed agreement is necessary for consistency. With an increasing number
of servers, these systems become more susceptible to single-server failures,
increasing the relevance of fault-tolerance. Atomic broadcast enables
fault-tolerant distributed agreement, yet it is costly to solve. Most practical
algorithms entail linear work per broadcast message. AllConcur -- a leaderless
approach -- reduces the work, by connecting the servers via a sparse resilient
overlay network; yet, this resiliency entails redundancy, limiting the
reduction of work. In this paper, we propose AllConcur+, an atomic broadcast
algorithm that lifts this limitation: During intervals with no failures, it
achieves minimal work by using a redundancy-free overlay network. When failures
do occur, it automatically recovers by switching to a resilient overlay
network. In our performance evaluation of non-failure scenarios, AllConcur+
achieves comparable throughput to AllGather -- a non-fault-tolerant distributed
agreement algorithm -- and outperforms AllConcur, LCR and Libpaxos both in
terms of throughput and latency. Furthermore, our evaluation of failure
scenarios shows that AllConcur+'s expected performance is robust with regard to
occasional failures. Thus, for realistic use cases, leveraging redundancy-free
distributed agreement during intervals with no failures improves performance
significantly.Comment: Overview: 24 pages, 6 sections, 3 appendices, 8 figures, 3 tables.
Modifications from previous version: extended the evaluation of AllConcur+
with a simulation of a multiple datacenters deploymen
DART-MPI: An MPI-based Implementation of a PGAS Runtime System
A Partitioned Global Address Space (PGAS) approach treats a distributed
system as if the memory were shared on a global level. Given such a global view
on memory, the user may program applications very much like shared memory
systems. This greatly simplifies the tasks of developing parallel applications,
because no explicit communication has to be specified in the program for data
exchange between different computing nodes. In this paper we present DART, a
runtime environment, which implements the PGAS paradigm on large-scale
high-performance computing clusters. A specific feature of our implementation
is the use of one-sided communication of the Message Passing Interface (MPI)
version 3 (i.e. MPI-3) as the underlying communication substrate. We evaluated
the performance of the implementation with several low-level kernels in order
to determine overheads and limitations in comparison to the underlying MPI-3.Comment: 11 pages, International Conference on Partitioned Global Address
Space Programming Models (PGAS14
- …