1,080 research outputs found
Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings
The electrostatic confinement of massless charge carriers is hampered by
Klein tunneling. Circumventing this problem in graphene mainly relies on
carving out nanostructures or applying electric displacement fields to open a
band gap in bilayer graphene. So far, these approaches suffer from edge
disorder or insufficiently controlled localization of electrons. Here we
realize an alternative strategy in monolayer graphene, by combining a
homogeneous magnetic field and electrostatic confinement. Using the tip of a
scanning tunneling microscope, we induce a confining potential in the Landau
gaps of bulk graphene without the need for physical edges. Gating the localized
states towards the Fermi energy leads to regular charging sequences with more
than 40 Coulomb peaks exhibiting typical addition energies of 7-20 meV. Orbital
splittings of 4-10 meV and a valley splitting of about 3 meV for the first
orbital state can be deduced. These experimental observations are
quantitatively reproduced by tight binding calculations, which include the
interactions of the graphene with the aligned hexagonal boron nitride
substrate. The demonstrated confinement approach appears suitable to create
quantum dots with well-defined wave function properties beyond the reach of
traditional techniques
A continuum model of gas flows with localized density variations
We discuss the kinetic representation of gases and the derivation of macroscopic equations governing the thermomechanical behavior of a dilute gas viewed at the macroscopic level as a continuous medium. We introduce an approach to kinetic theory where spatial distributions of the molecules are incorporated through a mean-free-volume argument. The new kinetic equation derived contains an extra term involving the evolution of this volume, which we attribute to changes in the thermodynamic properties of the medium. Our kinetic equation leads to a macroscopic set of continuum equations in which the gradients of thermodynamic properties, in particular density gradients, impact on diffusive fluxes. New transport terms bearing both convective and diffusive natures arise and are interpreted as purely macroscopic expansion or compression. Our new model is useful for describing gas flows that display non-local-thermodynamic-equilibrium (rarefied gas flows), flows with relatively large variations of macroscopic properties, and/or highly compressible fluid flows
Recommended from our members
Van der Walls interaction affects wrinkle formation in two-dimensional materials
Nonlinear mechanics of solids is an exciting field that encompasses both beautiful mathematics, such as the emergence of instabilities and the formation of complex patterns, as well as multiple applications. Two-dimensional crystals and van der Waals (vdW) heterostructures allow revisiting this field on the atomic level, allowing much finer control over the parameters and offering atomistic interpretation of experimental observations. In this work, we consider the formation of instabilities consisting of radially oriented wrinkles around mono- and few-layer ābubblesā in two-dimensional vdW heterostructures. Interestingly, the shape and wavelength of the wrinkles depend not only on the thickness of the two-dimensional crystal forming the bubble, but also on the atomistic structure of the interface between the bubble and the substrate, which can be controlled by their relative orientation. We argue that the periodic nature of these patterns emanates from an energetic balance between the resistance of the top membrane to bending, which favors large wavelength of wrinkles, and the membrane-substrate vdW attraction, which favors small wrinkle amplitude. Employing the classical āWinkler foundationā model of elasticity theory, we show that the number of radial wrinkles conveys a valuable relationship between the bending rigidity of the top membrane and the strength of the vdW interaction. Armed with this relationship, we use our data to demonstrate a nontrivial dependence of the bending rigidity on the number of layers in the top membrane, which shows two different regimes driven by slippage between the layers, and a high sensitivity of the vdW force to the alignment between the substrate and the membrane
Tuning the pseudospin polarization of graphene by a pseudo-magnetic field
One of the intriguing characteristics of honeycomb lattices is the appearance
of a pseudo-magnetic field as a result of mechanical deformation. In the case
of graphene, the Landau quantization resulting from this pseudo-magnetic field
has been measured using scanning tunneling microscopy. Here we show that a
signature of the pseudo-magnetic field is a local sublattice symmetry breaking
observable as a redistribution of the local density of states. This can be
interpreted as a polarization of graphene's pseudospin due to a strain induced
pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic
field. We reveal this sublattice symmetry breaking by tunably straining
graphene using the tip of a scanning tunneling microscope. The tip locally
lifts the graphene membrane from a SiO support, as visible by an increased
slope of the curves. The amount of lifting is consistent with molecular
dynamics calculations, which reveal a deformed graphene area under the tip in
the shape of a Gaussian. The pseudo-magnetic field induced by the deformation
becomes visible as a sublattice symmetry breaking which scales with the lifting
height of the strained deformation and therefore with the pseudo-magnetic field
strength. Its magnitude is quantitatively reproduced by analytic and
tight-binding models, revealing fields of 1000 T. These results might be the
starting point for an effective THz valley filter, as a basic element of
valleytronics.Comment: Revised manuscript: streamlined the abstract and introduction, added
methods to supplement, Nano Letters, 201
AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
Coherent manipulation of binary degrees of freedom is at the heart of modern
quantum technologies. Graphene offers two binary degrees: the electron spin and
the valley. Efficient spin control has been demonstrated in many solid state
systems, while exploitation of the valley has only recently been started, yet
without control on the single electron level. Here, we show that van-der Waals
stacking of graphene onto hexagonal boron nitride offers a natural platform for
valley control. We use a graphene quantum dot induced by the tip of a scanning
tunneling microscope and demonstrate valley splitting that is tunable from -5
to +10 meV (including valley inversion) by sub-10-nm displacements of the
quantum dot position. This boosts the range of controlled valley splitting by
about one order of magnitude. The tunable inversion of spin and valley states
should enable coherent superposition of these degrees of freedom as a first
step towards graphene-based qubits
- ā¦