15 research outputs found

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Interleukin-6 signaling drives fibrosis in unresolved inflammation

    Get PDF
    Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    No full text
    Making large datasets findable, accessible, interoperable and reusable could accelerate technology development. Now, Jacobsson et al. present an approach to build an open-access database and analysis tool for perovskite solar cells.Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.LSP

    Post-hospitalisation COVID-19 cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction

    No full text
    The spectrum, pathophysiology, and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the one-year cognitive, serum biomarker, and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who had required hospitalisation, compared to 2,927 normative matched controls. Cognitive deficits were global and associated with elevated brain injury markers, and reduced anterior cingulate cortex volume one year after COVID-19. The severity of the initial infective insult, post-acute psychiatric symptoms, and a history of encephalopathy were associated with greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies

    A Broken Dream: Homelessness & Immigrants

    No full text
    corecore