2,029 research outputs found
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment
Background
Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival.
Methods/design
Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored.
Discussion
This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives
Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control
The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1
Training Auto-encoder-based Optimizers for Terahertz Image Reconstruction
Terahertz (THz) sensing is a promising imaging technology for a wide variety
of different applications. Extracting the interpretable and physically
meaningful parameters for such applications, however, requires solving an
inverse problem in which a model function determined by these parameters needs
to be fitted to the measured data. Since the underlying optimization problem is
nonconvex and very costly to solve, we propose learning the prediction of
suitable parameters from the measured data directly. More precisely, we develop
a model-based autoencoder in which the encoder network predicts suitable
parameters and the decoder is fixed to a physically meaningful model function,
such that we can train the encoding network in an unsupervised way. We
illustrate numerically that the resulting network is more than 140 times faster
than classical optimization techniques while making predictions with only
slightly higher objective values. Using such predictions as starting points of
local optimization techniques allows us to converge to better local minima
about twice as fast as optimization without the network-based initialization.Comment: This is a pre-print of a conference paper published in German
Conference on Pattern Recognition (GCPR) 201
Sine-Gordon Model - Renormalization Group Solutions and Applications
The sine-Gordon model is discussed and analyzed within the framework of the
renormalization group theory. A perturbative renormalization group procedure is
carried out through a decomposition of the sine-Gordon field in slow and fast
modes. An effective slow modes's theory is derived and re-scaled to obtain the
model's flow equations. The resulting Kosterlitz-Thouless phase diagram is
obtained and discussed in detail. The theory's gap is estimated in terms of the
sine-Gordon model paramaters. The mapping between the sine-Gordon model and
models for interacting electrons in one dimension, such as the g-ology model
and Hubbard model, is discussed and the previous renormalization group results,
obtained for the sine-Gordon model, are thus borrowed to describe different
aspects of Luttinger liquid systems, such as the nature of its excitations and
phase transitions. The calculations are carried out in a thorough and
pedagogical manner, aiming the reader with no previous experience with the
sine-Gordon model or the renormalization group approach.Comment: 44 pages, 7 figure
Connectivity within and among a Network of Temperate Marine Reserves
Networks of marine reserves are increasingly being promoted as a means of conserving marine biodiversity. One consideration in designing systems of marine reserves is the maintenance of connectivity to ensure the long-term persistence and resilience of populations. Knowledge of connectivity, however, is frequently lacking during marine reserve design and establishment. We characterise patterns of genetic connectivity of 3 key species of habitat-forming macroalgae across an established network of temperate marine reserves on the east coast of Australia and the implications for adaptive management and marine reserve design. Connectivity varied greatly among species. Connectivity was high for the subtidal macroalgae Ecklonia radiata and Phyllospora comosa and neither species showed any clear patterns of genetic structuring with geographic distance within or among marine parks. In contrast, connectivity was low for the intertidal, Hormosira banksii, and there was a strong pattern of isolation by distance. Coastal topography and latitude influenced small scale patterns of genetic structure. These results suggest that some species are well served by the current system of marine reserves in place along this temperate coast but it may be warranted to revisit protection of intertidal habitats to ensure the long-term persistence of important habitat-forming macroalgae. Adaptively managing marine reserve design to maintain connectivity may ensure the long-term persistence and resilience of marine habitats and the biodiversity they support
Documenting the NICU design dilemma: comparative patient progress in open-ward and single family room units
Objective:To test the efficacy of single family room (SFR) neonatal intensive care unit (NICU) designs, questions regarding patient medical progress and relative patient safety were explored. Addressing these questions would be of value to hospital staff, administrators and designers alike. Study Design:This prospective study documented, by means of Institution Review Board-approved protocols, the progress of patients in two contrasting NICU designs. Noise levels, illumination and air quality measurements were included to define the two NICU physical environments. Result:Infants in the SFR unit had fewer apneic events, reduced nosocomial sepsis and mortality, as well as earlier transitions to enteral nutrition. More mothers sustained stage III lactation, and more infants were discharged breastfeeding in the SFR. Conclusion:This study showed the SFR to be more conducive to family-centered care, and to enhance infant medical progress and breastfeeding success over that of an open ward
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds
A systematic analysis of low temperature magnetic phase diagrams of Ce
compounds is performed in order to recognize the thermodynamic conditions to be
fulfilled by those systems to reach a quantum critical regime and,
alternatively, to identify other kinds of low temperature behaviors. Based on
specific heat () and entropy () results, three different types of
phase diagrams are recognized: i) with the entropy involved into the ordered
phase () decreasing proportionally to the ordering temperature
(), ii) those showing a transference of degrees of freedom from the
ordered phase to a non-magnetic component, with their jump
() vanishing at finite temperature, and iii) those ending in a
critical point at finite temperature because their do not decrease
with producing an entropy accumulation at low temperature.
Only those systems belonging to the first case, i.e. with as
, can be regarded as candidates for quantum critical behavior.
Their magnetic phase boundaries deviate from the classical negative curvature
below \,K, denouncing frequent misleading extrapolations down to
T=0. Different characteristic concentrations are recognized and analyzed for
Ce-ligand alloyed systems. Particularly, a pre-critical region is identified,
where the nature of the magnetic transition undergoes significant
modifications, with its discontinuity strongly
affected by magnetic field and showing an increasing remnant entropy at . Physical constraints arising from the third law at are discussed
and recognized from experimental results
The association of cancer survival with four socioeconomic indicators: a longitudinal study of the older population of England and Wales 1981–2000
BACKGROUND: Many studies have found socioeconomic differentials in cancer survival. Previous studies have generally demonstrated poorer cancer survival with decreasing socioeconomic status but mostly used only ecological measures of status and analytical methods estimating simple survival. This study investigate socio-economic differentials in cancer survival using four indicators of socioeconomic status; three individual and one ecological. It uses a relative survival method which gives a measure of excess mortality due to cancer. METHODS: This study uses prospective record linkage data from The Office for National Statistics Longitudinal Study for England and Wales. The participants are Longitudinal Study members, recorded at census in 1971 and 1981 and with a primary malignant cancer diagnosed at age 45 or above, between 1981 and 1997, with follow-up until end 2000. The outcome measure is relative survival/excess mortality, compared with age and sex adjusted survival of the general population. Relative survival and Poisson regression analyses are presented, giving models of relative excess mortality, adjusted for covariates. RESULTS: Different socioeconomic indicators detect survival differentials of varying magnitude and definition. For all cancers combined, the four indicators show similar effects. For individual cancers there are differences between indicators. Where there is an association, all indicators show poorer survival with lower socioeconomic status. CONCLUSION: Cancer survival differs markedly by socio-economic status. The commonly used ecological measure, the Carstairs Index, is adequate at demonstrating socioeconomic differentials in survival for combined cancers and some individual cancers. A combination of car access and housing tenure is more sensitive than the ecological Carstairs measure at detecting socioeconomic effects on survival – confirming Carstairs effects where they occur but additionally identifying effects for other cancers. Social class is a relatively weak indicator of survival differentials
- …