6 research outputs found
Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays
BACKGROUND: High-density oligonucleotide arrays (HDONAs) are a powerful tool for assessing differential mRNA expression levels. To establish the statistical significance of an observed change in expression, one must take into account the noise introduced by the enzymatic and hybridization steps, called type I noise. We undertake an empirical characterization of the experimental repeatability of results by carrying out statistical analysis of a large number of duplicate HDONA experiments. RESULTS: We assign scoring functions for expression ratios and associated quality measures. Both the perfect-match (PM) probes and the differentials between PM and single-mismatch (MM) probes are considered as raw intensities. We then calculate the log-ratio of the noise structure using robust estimates of their intensity-dependent variance. The noise structure in the log-ratios follows a local log-normal distribution in both the PM and PM-MM cases. Significance relative to the type I noise can therefore be quantified reliably using the local standard deviation (SD). We discuss the intensity dependence of the SD and show that ratio scores greater than 1.25 are significant in the mid- to high-intensity range. CONCLUSIONS: The noise inherent in HDONAs is characteristically dependent on intensity and can be well described in terms of local normalization of log-ratio distributions. Therefore, robust estimates of the local SD of these distributions provide a simple and powerful way to assess significance (relative to type I noise) in differential gene expression, and will be helpful in practice for improving the reliability of predictions from hybridization experiments
In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis
Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells
Prenatal screening for 22q11.2 deletion using a targeted microarray-based cell-free DNA test
Objective: To determine the performance of a targeted microarray-based cell-free DNA (cfDNA) test (Harmony Prenatal Test®) for the identification of pregnancies at increased risk for 22q11.2 deletion. Methods: Test performance was determined in 2 steps including a total of 1,953 plasma samples. Analytical validation was performed in 1,736 plasma samples. Clinical verification of performance was performed in an additional 217 prospectively ascertained samples from pregnancies with fetal deletion status determined by diagnostic testing. Results: Analytical sensitivity was 75.4% (95% CI: 67.1-82.2%) based on 122 samples with deletions ranging from 1.96 to 3.25 Mb. In 1,614 presumed unaffected samples, specificity was determined to be at least 99.5% (95% CI: 99.0-99.7%). In the clinical cohort, 5 of 7 samples from pregnancies affected with 22q11.2 deletion were determined to have a high probability of deletion. There were no false positive results in the 210 unaffected samples in this cohort. These clinical data are consistent with the performance demonstrated in the analytical validation. Conclusions: cfDNA testing using a targeted microarray-based technology is able to identify pregnancies at increased risk for 22q11.2 deletions of 3.0 Mb and smaller while maintaining a low false positive rate.SCOPUS: ar.jinfo:eu-repo/semantics/publishe