6,754 research outputs found

    Trophic Cascades, Nutrients, and Lake Productivity: Whole-Lake Experiments

    Get PDF
    Responses of zooplankton, pelagic primary producers, planktonic bacteria, and CO2 exchange with the atmosphere were measured in four lakes with contrasting food webs under a range of nutrient enrichments during a seven-year period. Prior to enrichment, food webs were manipulated to create contrasts between piscivore dominance and planktivore dominance. Nutrient enrichments of inorganic nitrogen and phosphorus exhibited ratios of N:P \u3e 17:1, by atoms, to maintain P limitation. An unmanipulated reference lake, Paul Lake, revealed baseline variability but showed no trends that could confound the interpretation of changes in the nearby manipulated lakes. Herbivorous zooplankton of West Long Lake (piscivorous fishes) were large-bodied Daphnia spp., in contrast to the small-bodied grazers that predominated in Peter Lake (planktivorous fishes). At comparable levels of nutrient enrichment, Peter Lake\u27s areal chlorophyll and areal primary production rates exceeded those of West Long Lake by factors of approximately three and six, respectively. Grazers suppressed pelagic primary producers in West Long Lake, relative to Peter Lake, even when nutrient input rates were so high that soluble reactive phosphorus accumulated in the epilimnions of both lakes during summer. Peter Lake also had higher bacterial production (but not biomass) than West Long Lake. Hydrologic changes that accompanied manipulation of East Long Lake caused concentrations of colored dissolved organic carbon to increase, leading to considerable variability in fish and zooplankton populations. Both trophic cascades and water color appeared to inhibit the response of primary producers to nutrients in East Long Lake. Carbon dioxide was discharged to the atmosphere by Paul Lake in all years and by the other lakes prior to nutrient addition. During nutrient addition, only Peter Lake consistently absorbed CO2 from the atmosphere, due to high rates of carbon fixation by primary producers. In contrast, CO2 concentrations of West Long Lake shifted to near-atmospheric levels, and net fluxes were near zero, while East Long Lake continued to discharge CO2 to the atmosphere

    The Nature of the Halo Population of NGC 5128 Resolved with NICMOS on the Hubble Space Telescope

    Get PDF
    We present the first infrared color-magnitude diagram (CMD) for the halo of a giant elliptical galaxy. The CMD for the stars in the halo of NGC 5128 (Centaurus A) was constructed from HST NICMOS observations of the WFPC2 CHIP-3 field of Soria et al. (1996) to a 50% completeness magnitude limit of [F160W]=23.8. This field is located at a distance of 08'50" (~9 kpc) south of the center of the galaxy. The luminosity function (LF) shows a marked discontinuity at [F160W]=20.0. This is 1-2 mag above the tip of the red giant branch (TRGB) expected for an old population (~12 Gyr) at the distance modulus of NGC 5128. We propose that the majority of stars above the TRGB have intermediate ages (~2 Gyr), in agreement with the WFPC2 observations of Soria et al. (1996). Five stars with magnitudes brighter than the LF discontinuity are most probably due to Galactic contamination. The weighted average of the mean giant branch color above our 50% completeness limit is [F110W]-[F160W]=1.22+-0.08 with a dispersion of 0.19 mag. From our artificial-star experiments we determine that the observed spread in color is real, suggesting a real spread in metallicity. We estimate the lower and upper bounds of the stellar metallicity range by comparisons with observations of Galactic star clusters and theoretical isochrones. Assuming an old population, we find that, in the halo field of NGC 5128 we surveyed, stars have metallicities ranging from roughly 1% of solar at the blue end of the color spread to roughly solar at the red end, with a mean of [Fe/H]=-0.76 and a dispersion of 0.44 dex.Comment: Accepted for publication in AJ, 23 pages of text, 13 figures, uses aastex v5.

    Photoelectric measurement of blood flow during hemodialysis

    Get PDF
    Accurate measurements of blood flow rate during hemodialysis are essential for determinations of hemodialyzer performance. Despite the availability of a variety of electronic blood flow meters, use of such instruments for determination of blood flow in hemodialysis has never been satisfactory, a situation caused by such factors as the need to recalibrate frequently, the necessity of incorporating transducers into the dialyzer blood circuit and the effect which variables such as hematocrit may have on the accuracy of determination. Furthermore, such devices are expensive and often require the periodic services of an electronics specialist to maintain them in an operable condition.An alternative technique for measuring flow rate in the extracorporeal blood tubing consists of timing the passage of an injected air bubble between two points in the tubing. Since the advent of maintenance dialysis, the “racetrack and bubble time” technique [1] has been widely used for routine determinations of blood flow rate. Data derived from research studies in which this method of flow determination was employed have been published widely, in spite of the relative inaccuracies of the method

    The Velocity Function of Galaxies

    Get PDF
    We present a galaxy circular velocity function, Psi(log v), derived from existing luminosity functions and luminosity-velocity relations. Such a velocity function is desirable for several reasons. First, it enables an objective comparison of luminosity functions obtained in different bands and for different galaxy morphologies, with a statistical correction for dust extinction. In addition, the velocity function simplifies comparison of observations with predictions from high-resolution cosmological N-body simulations. We derive velocity functions from five different data sets and find rough agreement among them, but about a factor of 2 variation in amplitude. These velocity functions are then compared with N-body simulations of a LCDM model (corrected for baryonic infall) in order to demonstrate both the utility and current limitations of this approach. The number density of dark matter halos and the slope of the velocity function near v_*, the circular velocity corresponding to an ~L_* spiral galaxy, are found to be comparable to that of observed galaxies. The primary sources of uncertainty in construction of Psi(log v) from observations and N-body simulations are discussed and explanations are suggected to account for these discrepancies.Comment: Latex. 28 pages, 4 figures. Accepted by Ap

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    VIS: the visible imager for Euclid

    Get PDF
    Euclid-VIS is a large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2019. Together with the near infrared imaging within the NISP instrument it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2240 sec, VIS will reach to V=24.5 (10{\sigma}) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy imaging dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the Euclid Definition phase.Comment: 10 pages, 6 figure

    Stellar Populations at the Center of IC 1613

    Full text link
    We have observed the center of the Local Group dwarf irregular galaxy IC 1613 with WFPC2 aboard the Hubble Space Telescope in the F439W, F555W, and F814W filters. We find a dominant old stellar population (aged ~7 Gyr), identifiable by the strong red giant branch (RGB) and red clump populations. From the (V-I) color of the RGB, we estimate a mean metallicity of the intermediate-age stellar population [Fe/H] = -1.38 +/- 0.31. We confirm a distance of 715 +/- 40 kpc using the I-magnitude of the RGB tip. The main-sequence luminosity function down to I ~25 provides evidence for a roughly constant SFR of approximately 0.00035 solar masses per year across the WFPC2 field of view (0.22 square kpc) during the past 250-350 Myr. Structure in the blue loop luminosity function implies that the SFR was ~50% higher 400-900 Myr ago than today. The mean heavy element abundance of these young stars is 1/10th solar. The best explanation for a red spur on the main-sequence at I = 24.7 is the blue horizontal branch component of a very old stellar population at the center of IC 1613. We have also imaged a broader area of IC 1613 using the 3.5-meter WIYN telescope under excellent seeing conditions. The AGB-star luminosity function is consistent with a period of continuous star formation over at least the age range 2-10 Gyr. We present an approximate age-metallicity relation for IC 1613, which appears similar to that of the Small Magellanic Cloud. We compare the Hess diagram of IC 1613 to similar data for three other Local Group dwarf galaxies, and find that it most closely resembles the nearby, transition-type dwarf galaxy Pegasus (DDO 216).Comment: To appear in the September 1999 Astronomical Journal. LaTeX, uses AASTeX v4.0, emulateapj style file, 19 pages, 12 postscript figures, 2 tables. 5 of the figures available separately via the WW
    corecore