1,736 research outputs found

    Achieving Foundation Accountability and Transparency: Lessons From the Robert Wood Johnson Foundation’s \u3ci\u3eScorecard\u3c/i\u3e

    Get PDF
    · The purpose of this article is to help foundations in their accountability and transparency efforts by sharing lessons from one foundation’s journey to develop a scorecard. · A commitment to funding and sharing the results from rigorous evaluations set the tone for Robert Wood Johnson Foundation (RWJF) accountability. · The Scorecard is a powerful tool for RWJF to set goals, track organizational effectiveness, and motivate responses to shortcomings. · Foundations can tailor their scorecard to include what best serves their needs. · With its Scorecard, RWJF found that comparative and quantitative measures are the most powerful forces to motivate change. · Setting targets motivates staff to focus their efforts on certain areas and make improvements

    Transferring Water Rights in the Western States: A Comparison of Policies and Procedures

    Get PDF
    vi, 90 p. : ill. ; 28 cmhttps://scholar.law.colorado.edu/books_reports_studies/1106/thumbnail.jp

    Self-diffusion in binary blends of cyclic and linear polymers

    Full text link
    A lattice model is used to estimate the self-diffusivity of entangled cyclic and linear polymers in blends of varying compositions. To interpret simulation results, we suggest a minimal model based on the physical idea that constraints imposed on a cyclic polymer by infiltrating linear chains have to be released, before it can diffuse beyond a radius of gyration. Both, the simulation, and recently reported experimental data on entangled DNA solutions support the simple model over a wide range of blend compositions, concentrations, and molecular weights.Comment: 10 pages, 2 figure

    Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study

    Full text link
    We study single-chain motion in semidilute solutions of polymers of length N = 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm. The crossover length of the transition from Zimm (short lengths and times) to Rouse dynamics (larger scales) is proportional to the static screening length. The crossover time is the corresponding Zimm time. Our data indicate Zimm behavior at large lengths but short times. There is no hydrodynamic screening until the chains feel constraints, after which they resist the flow: "Incomplete screening" occurs in the time domain.Comment: 3 figure

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    Critical behaviour of the Rouse model for gelling polymers

    Full text link
    It is shown that the traditionally accepted "Rouse values" for the critical exponents at the gelation transition do not arise from the Rouse model for gelling polymers. The true critical behaviour of the Rouse model for gelling polymers is obtained from spectral properties of the connectivity matrix of the fractal clusters that are formed by the molecules. The required spectral properties are related to the return probability of a "blind ant"-random walk on the critical percolating cluster. The resulting scaling relations express the critical exponents of the shear-stress-relaxation function, and hence those of the shear viscosity and of the first normal stress coefficient, in terms of the spectral dimension dsd_{s} of the critical percolating cluster and the exponents σ\sigma and τ\tau of the cluster-size distribution.Comment: 9 pages, slightly extended version, to appear in J. Phys.

    Critical Dynamics of Gelation

    Full text link
    Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include the effects of permanent random crosslinks. We derive an exact correspondence between the static shear viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a scaling description, it yields the scaling relation k=ϕβ k=\phi-\beta for the critical exponent of the shear viscosity. Here β\beta is the thermal exponent for the gel fraction and ϕ\phi is the crossover exponent of the resistor network. The results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering function in the long-time limit, thereby corroborating previous results.Comment: 34 pages, 2 figures (revtex, amssymb); revised version (minor changes

    Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways

    Get PDF
    The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies
    corecore