1,736 research outputs found
Achieving Foundation Accountability and Transparency: Lessons From the Robert Wood Johnson Foundation’s \u3ci\u3eScorecard\u3c/i\u3e
· The purpose of this article is to help foundations in their accountability and transparency efforts by sharing lessons from one foundation’s journey to develop a scorecard.
· A commitment to funding and sharing the results from rigorous evaluations set the tone for Robert Wood Johnson Foundation (RWJF) accountability.
· The Scorecard is a powerful tool for RWJF to set goals, track organizational effectiveness, and motivate responses to shortcomings.
· Foundations can tailor their scorecard to include what best serves their needs.
· With its Scorecard, RWJF found that comparative and quantitative measures are the most powerful forces to motivate change.
· Setting targets motivates staff to focus their efforts on certain areas and make improvements
Recommended from our members
Winter 1972
The Mode of Action of Arsenicals in the Soil by Cecil F. Kerr (page 3) The Golf Course Superintendent: A Job Description (5) Factors Affecting Carbohydrate Reserves of Cool Season Turfgrasses by L.J. Zanoni, L. F. Michelson, W.G. COlby, and M. Drake (6) Turf Bulletin\u27s Photo Quiz by Frederick G. Cheney (9) A Close Look at TCDD (10) Environmental News--Environmental Protection Agency Cancels Registration of Herbicide Amitrole (11) Homeowner\u27s Section--Crabgrass in Perspective by R.A. Peters (12) Merion Tees--Maintenance Suggestions (14) Use of Ammonium Sulfate in Fluid Fertilizers by Frank P. Achorn and W.C. Scott, Jr. (15) River Ecology and the Impact on Man (17) To Roll or Not to Roll (18) Editorial--Talkin\u27 Turfie (24
Transferring Water Rights in the Western States: A Comparison of Policies and Procedures
vi, 90 p. : ill. ; 28 cmhttps://scholar.law.colorado.edu/books_reports_studies/1106/thumbnail.jp
Self-diffusion in binary blends of cyclic and linear polymers
A lattice model is used to estimate the self-diffusivity of entangled cyclic
and linear polymers in blends of varying compositions. To interpret simulation
results, we suggest a minimal model based on the physical idea that constraints
imposed on a cyclic polymer by infiltrating linear chains have to be released,
before it can diffuse beyond a radius of gyration. Both, the simulation, and
recently reported experimental data on entangled DNA solutions support the
simple model over a wide range of blend compositions, concentrations, and
molecular weights.Comment: 10 pages, 2 figure
Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study
We study single-chain motion in semidilute solutions of polymers of length N
= 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm.
The crossover length of the transition from Zimm (short lengths and times) to
Rouse dynamics (larger scales) is proportional to the static screening length.
The crossover time is the corresponding Zimm time. Our data indicate Zimm
behavior at large lengths but short times. There is no hydrodynamic screening
until the chains feel constraints, after which they resist the flow:
"Incomplete screening" occurs in the time domain.Comment: 3 figure
Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris
The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur
Critical behaviour of the Rouse model for gelling polymers
It is shown that the traditionally accepted "Rouse values" for the critical
exponents at the gelation transition do not arise from the Rouse model for
gelling polymers. The true critical behaviour of the Rouse model for gelling
polymers is obtained from spectral properties of the connectivity matrix of the
fractal clusters that are formed by the molecules. The required spectral
properties are related to the return probability of a "blind ant"-random walk
on the critical percolating cluster. The resulting scaling relations express
the critical exponents of the shear-stress-relaxation function, and hence those
of the shear viscosity and of the first normal stress coefficient, in terms of
the spectral dimension of the critical percolating cluster and the
exponents and of the cluster-size distribution.Comment: 9 pages, slightly extended version, to appear in J. Phys.
Critical Dynamics of Gelation
Shear relaxation and dynamic density fluctuations are studied within a Rouse
model, generalized to include the effects of permanent random crosslinks. We
derive an exact correspondence between the static shear viscosity and the
resistance of a random resistor network. This relation allows us to compute the
static shear viscosity exactly for uncorrelated crosslinks. For more general
percolation models, which are amenable to a scaling description, it yields the
scaling relation for the critical exponent of the shear
viscosity. Here is the thermal exponent for the gel fraction and
is the crossover exponent of the resistor network. The results on the shear
viscosity are also used in deriving upper and lower bounds on the incoherent
scattering function in the long-time limit, thereby corroborating previous
results.Comment: 34 pages, 2 figures (revtex, amssymb); revised version (minor
changes
Scope and Mechanistic Study of the Coupling Reaction of α,β-Unsaturated Carbonyl Compounds with Alkenes: Uncovering Electronic Effects on Alkene Insertion vs Oxidative Coupling Pathways
The cationic ruthenium-hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4– (1) was found to be a highly effective catalyst for the intermolecular conjugate addition of simple alkenes to α,β-unsaturated carbonyl compounds to give (Z)-selective tetrasubstituted olefin products. The analogous coupling reaction of cinnamides with electron-deficient olefins led to the oxidative coupling of two olefinic C–H bonds in forming (E)-selective diene products. The intramolecular version of the coupling reaction efficiently produced indene and bicyclic fulvene derivatives. The empirical rate law for the coupling reaction of ethyl cinnamate with propene was determined as follows: rate = k[1]1[propene]0[cinnamate]−1. A negligible deuterium kinetic isotope effect (kH/kD = 1.1 ± 0.1) was measured from both (E)-C6H5CH═C(CH3)CONHCH3 and (E)-C6H5CD═C(CH3)CONHCH3 with styrene. In contrast, a significant normal isotope effect (kH/kD = 1.7 ± 0.1) was observed from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene and styrene-d8. A pronounced carbon isotope effect was measured from the coupling reaction of (E)-C6H5CH═CHCO2Et with propene (13C(recovered)/13C(virgin) at Cβ = 1.019(6)), while a negligible carbon isotope effect (13C(recovered)/13C(virgin) at Cβ = 0.999(4)) was obtained from the reaction of (E)-C6H5CH═C(CH3)CONHCH3 with styrene. Hammett plots from the correlation of para-substituted p-X-C6H4CH═CHCO2Et (X = OCH3, CH3, H, F, Cl, CO2Me, CF3) with propene and from the treatment of (E)-C6H5CH═CHCO2Et with a series of para-substituted styrenes p-Y-C6H4CH═CH2 (Y = OCH3, CH3, H, F, Cl, CF3) gave the positive slopes for both cases (ρ = +1.1 ± 0.1 and +1.5 ± 0.1, respectively). Eyring analysis of the coupling reaction led to the thermodynamic parameters, ΔH⧧ = 20 ± 2 kcal mol–1 and ΔS⧧ = −42 ± 5 eu. Two separate mechanistic pathways for the coupling reaction have been proposed on the basis of these kinetic and spectroscopic studies
- …