403 research outputs found
Robust Randomness Amplifiers: Upper and Lower Bounds
A recent sequence of works, initially motivated by the study of the nonlocal
properties of entanglement, demonstrate that a source of
information-theoretically certified randomness can be constructed based only on
two simple assumptions: the prior existence of a short random seed and the
ability to ensure that two black-box devices do not communicate (i.e. are
non-signaling). We call protocols achieving such certified amplification of a
short random seed randomness amplifiers.
We introduce a simple framework in which we initiate the systematic study of
the possibilities and limitations of randomness amplifiers. Our main results
include a new, improved analysis of a robust randomness amplifier with
exponential expansion, as well as the first upper bounds on the maximum
expansion achievable by a broad class of randomness amplifiers. In particular,
we show that non-adaptive randomness amplifiers that are robust to noise cannot
achieve more than doubly exponential expansion. Finally, we show that a wide
class of protocols based on the use of the CHSH game can only lead to (singly)
exponential expansion if adversarial devices are allowed the full power of
non-signaling strategies. Our upper bound results apply to all known
non-adaptive randomness amplifier constructions to date.Comment: 28 pages. Comments welcom
Free randomness can be amplified
Are there fundamentally random processes in nature? Theoretical predictions,
confirmed experimentally, such as the violation of Bell inequalities, point to
an affirmative answer. However, these results are based on the assumption that
measurement settings can be chosen freely at random, so assume the existence of
perfectly free random processes from the outset. Here we consider a scenario in
which this assumption is weakened and show that partially free random bits can
be amplified to make arbitrarily free ones. More precisely, given a source of
random bits whose correlation with other variables is below a certain
threshold, we propose a procedure for generating fresh random bits that are
virtually uncorrelated with all other variables. We also conjecture that such
procedures exist for any non-trivial threshold. Our result is based solely on
the no-signalling principle, which is necessary for the existence of free
randomness.Comment: 5+7 pages, 2 figures. Updated to match published versio
Greenhouse gas emissions as a result of spectators travelling to football in England
Transport remains a critical avenue in the attempt to reduce greenhouse gas (GHG) emissions and any significant effort to reduce travel GHG emissions will need to encourage a movement towards more fuel-efficient, less polluting behaviours. The aim of this paper is to calculate GHG emissions arising from the travel of spectators to and from football games within eight football tiers (3 to 10) in England, and to extrapolate this to a national level. The study comprised of 1649 participants with an average age of 42 years (M = 42.63, SD = 17.10). Participants travelled to and from games by walking, cycling, car, bus, train or taxi. The average distance travelled to and from games was 41.5 km. A Kruskal-Wallis test was conducted to evaluate differences in travel related GHG emissions between the eight football tiers during the 2012/13 season. The results indicate significant differences between football tiers' GHG emissions, H(7) = 46.474, p < 0.001. The annual GHG emission of spectators from the 8 tiers for the 2012/13 season was estimated at 56,237 tonnes of CO 2 e, accounting for less than 0.05% of transport emissions in England. Football authorities should have robust travel plans and educate spectators to employ more sustainable travel plans to games
Tomographic Quantum Cryptography Protocols are Reference Frame Independent
We consider the class of reference frame independent protocols in d
dimensions for quantum key distribution, in which Alice and Bob have one
natural basis that is aligned and the rest of their frames are unaligned. We
relate existing approaches to tomographically complete protocols. We comment on
two different approaches to finite key bounds in this setting, one direct and
one using the entropic uncertainty relation and suggest that the existing
finite key bounds can still be improved.Comment: Published version. 8 pages, 1 figur
Universal topological phase of 2D stabilizer codes
Two topological phases are equivalent if they are connected by a local
unitary transformation. In this sense, classifying topological phases amounts
to classifying long-range entanglement patterns. We show that all 2D
topological stabilizer codes are equivalent to several copies of one universal
phase: Kitaev's topological code. Error correction benefits from the
corresponding local mappings.Comment: 4 pages, 3 figure
Tight bounds for classical and quantum coin flipping
Coin flipping is a cryptographic primitive for which strictly better
protocols exist if the players are not only allowed to exchange classical, but
also quantum messages. During the past few years, several results have appeared
which give a tight bound on the range of implementable unconditionally secure
coin flips, both in the classical as well as in the quantum setting and for
both weak as well as strong coin flipping. But the picture is still incomplete:
in the quantum setting, all results consider only protocols with perfect
correctness, and in the classical setting tight bounds for strong coin flipping
are still missing. We give a general definition of coin flipping which unifies
the notion of strong and weak coin flipping (it contains both of them as
special cases) and allows the honest players to abort with a certain
probability. We give tight bounds on the achievable range of parameters both in
the classical and in the quantum setting.Comment: 18 pages, 2 figures; v2: published versio
Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?
The difficulty of explaining non-local correlations in a fixed causal
structure sheds new light on the old debate on whether space and time are to be
seen as fundamental. Refraining from assuming space-time as given a priori has
a number of consequences. First, the usual definitions of randomness depend on
a causal structure and turn meaningless. So motivated, we propose an intrinsic,
physically motivated measure for the randomness of a string of bits: its length
minus its normalized work value, a quantity we closely relate to its Kolmogorov
complexity (the length of the shortest program making a universal Turing
machine output this string). We test this alternative concept of randomness for
the example of non-local correlations, and we end up with a reasoning that
leads to similar conclusions as in, but is conceptually more direct than, the
probabilistic view since only the outcomes of measurements that can actually
all be carried out together are put into relation to each other. In the same
context-free spirit, we connect the logical reversibility of an evolution to
the second law of thermodynamics and the arrow of time. Refining this, we end
up with a speculation on the emergence of a space-time structure on bit strings
in terms of data-compressibility relations. Finally, we show that logical
consistency, by which we replace the abandoned causality, it strictly weaker a
constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction
No extension of quantum theory can have improved predictive power
According to quantum theory, measurements generate random outcomes, in stark
contrast with classical mechanics. This raises the question of whether there
could exist an extension of the theory which removes this indeterminism, as
suspected by Einstein, Podolsky and Rosen (EPR). Although this has been shown
to be impossible, existing results do not imply that the current theory is
maximally informative. Here we ask the more general question of whether any
improved predictions can be achieved by any extension of quantum theory. Under
the assumption that measurements can be chosen freely, we answer this question
in the negative: no extension of quantum theory can give more information about
the outcomes of future measurements than quantum theory itself. Our result has
significance for the foundations of quantum mechanics, as well as applications
to tasks that exploit the inherent randomness in quantum theory, such as
quantum cryptography.Comment: 6 pages plus 7 of supplementary material, 3 figures. Title changed.
Added discussion on Bell's notion of locality. FAQ answered at
http://perimeterinstitute.ca/personal/rcolbeck/FAQ.htm
Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes
Summary: Currently, little is known about the impact of silver nanoparticles (AgNPs) on ecologically important microorganisms such as ammonia-oxidizing bacteria (AOB). We performed a multi-analytical approach to demonstrate the effects of uncapped nanosilver (uAgNP), capped nanosilver (cAgNP) and Ag2SO4 on the activities of the AOB: Nitrosomonas europaea, Nitrosospira multiformis and Nitrosococcus oceani, and the growth of Escherichia coli and Bacillus subtilis as model bacterial systems in relation to AgNP type and concentration. All Ag treatments caused significant inhibition to the nitrification potential rates (NPRs) of Nitrosomonas europaea (decreased from 34 to cAgNP>uAgNP. In conclusion, AgNPs (especially cAgNPs) and Ag2SO4 adversely affected AOB activities and thus have the potential to severely impact key microbially driven processes such as nitrification in the environment
Inability of the entropy vector method to certify nonclassicality in linelike causal structures
Bell's theorem shows that our intuitive understanding of causation must be
overturned in light of quantum correlations. Nevertheless, quantum mechanics
does not permit signalling and hence a notion of cause remains. Understanding
this notion is not only important at a fundamental level, but also for
technological applications such as key distribution and randomness expansion.
It has recently been shown that a useful way to decide which classical causal
structures could give rise to a given set of correlations is to use entropy
vectors. These are vectors whose components are the entropies of all subsets of
the observed variables in the causal structure. The entropy vector method
employs causal relationships among the variables to restrict the set of
possible entropy vectors. Here, we consider whether the same approach can lead
to useful certificates of non-classicality within a given causal structure.
Surprisingly, we find that for a family of causal structures that include the
usual bipartite Bell structure they do not. For all members of this family, no
function of the entropies of the observed variables gives such a certificate,
in spite of the existence of nonclassical correlations. It is therefore
necessary to look beyond entropy vectors to understand cause from a quantum
perspective.Comment: 5 pages + appendix, v2: added references, v3: new title, added
journal referenc
- …