666 research outputs found
Fringe Visibility Estimators for the Palomar Testbed Interferometer
Visibility estimators and their performance are presented for use with the
Palomar Testbed Interferometer (PTI). One operational mode of PTI is
single-baseline visibility measurement using pathlength modulation with
synchronous readout by a NICMOS-3 infrared array. Visibility is estimated from
the fringe quadratures, either incoherently, or using source phase referencing
to provide a longer coherent integration time. The visibility estimators differ
those used with photon-counting detectors in order to account for biases
attributable to detector offsets and read noise. The performance of these
estimators is affected not only by photon noise, but also by the detector read
noise and errors in estimating the bias corrections, which affect the
incoherent and coherent estimators differently. Corrections for visibility loss
in the coherent estimators using the measured tracking jitter are also
presented.Comment: PASP in press (Jan 99). 13 Pages, no figure
Measurement of pupil interest in types of selections at grade 9 level by ballot method to determine pupil preference.
Thesis (Ed.M.)--Boston Universit
The PRIMA fringe sensor unit
The Fringe Sensor Unit (FSU) is the central element of the Phase Referenced
Imaging and Micro-arcsecond Astrometry (PRIMA) dual-feed facility and provides
fringe sensing for all observation modes, comprising off-axis fringe tracking,
phase referenced imaging, and high-accuracy narrow-angle astrometry. It is
installed at the Very Large Telescope Interferometer (VLTI) and successfully
servoed the fringe tracking loop during the initial commissioning phase. Unique
among interferometric beam combiners, the FSU uses spatial phase modulation in
bulk optics to retrieve real-time estimates of fringe phase after spatial
filtering. A R=20 spectrometer across the K-band makes the retrieval of the
group delay signal possible. The FSU was integrated and aligned at the VLTI in
summer 2008. It yields phase and group delay measurements at sampling rates up
to 2 kHz, which are used to drive the fringe tracking control loop. During the
first commissioning runs, the FSU was used to track the fringes of stars with
K-band magnitudes as faint as m_K=9.0, using two VLTI Auxiliary Telescopes (AT)
and baselines of up to 96 m. Fringe tracking using two Very Large Telescope
(VLT) Unit Telescopes (UT) was demonstrated. During initial commissioning and
combining stellar light with two ATs, the FSU showed its ability to improve the
VLTI sensitivity in K-band by more than one magnitude towards fainter objects,
which is of fundamental importance to achieve the scientific objectives of
PRIMA.Comment: 19 pages, 23 figures. minor changes and language editing. this
version equals the published articl
The Mount Wilson optical interferometer: The first automated instrument and the prospects for lunar interferometry
Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed
Binary star astronomy with optical interferometry
The Mark III Interferometer on Mt. Wilson, a long-baseline optical interferometer, was in daily operation for more that seven years. During that time it achieved milliarcsecond angular resolution for binary star astronomy, with submilliarcsecond accuracy. For the first time many spectroscopic binaries have been resolved, including binaries in which the companion cannot be detected with spectroscopy. The high angular resolution means that the traditional gap between visual and spectroscopic binaries has been decreased by more than an order of magnitude. In order to confirm the performance of the Mark III Interferometer, this paper uses the results of astronomical observations, and compares the Mark III Interferometer with other high-resolution techniques, including astrometry, lunar occultation, photometry, speckle, and spectroscopy. Comparisons for a variety of binary stars among these techniques indicate that long baseline optical interferometry proves a reliable, fully automatic, daily accessible astronomical capability for achieving high resolution, high accuracy, high dynamic range, and high photometric measurement precision for the study of binary stars
First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419
We present spatially-resolved K- and L-band spectra (at spectral resolution R
= 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were
obtained simultaneously with a new configuration of the 85-m baseline Keck
Interferometer. Our observations are sensitive to the radial distribution of
temperature in the inner region of the disk of MWC 419. We fit the visibility
data with both simple geometric and more physical disk models. The geometric
models (uniform disk and Gaussian) show that the apparent size increases
linearly with wavelength in the 2-4 microns wavelength region, suggesting that
the disk is extended with a temperature gradient. A model having a power-law
temperature gradient with radius simultaneously fits our interferometric
measurements and the spectral energy distribution data from the literature. The
slope of the power-law is close to that expected from an optically thick disk.
Our spectrally dispersed interferometric measurements include the Br gamma
emission line. The measured disk size at and around Br gamma suggests that
emitting hydrogen gas is located inside (or within the inner regions) of the
dust disk.Comment: Accepted for publication in Ap
New insights on the AU-scale circumstellar structure of FU Orionis
We report new near-infrared, long-baseline interferometric observations at
the AU scale of the pre-main-sequence star FU Orionis with the PTI, IOTA and
VLTI interferometers. This young stellar object has been observed on 42 nights
over a period of 6 years from 1998 to 2003. We have obtained 287 independent
measurements of the fringe visibility with 6 different baselines ranging from
20 to 110 meters in length, in the H and K bands. Our extensive (u,v)-plane
coverage, coupled with the published spectral energy distribution data, allows
us to test the accretion disk scenario. We find that the most probable
explanation for these observations is that FU Ori hosts an active accretion
disk whose temperature law is consistent with standard models. We are able to
constrain the geometry of the disk, including an inclination of 55 deg and a
position angle of 47 deg. In addition, a 10 percent peak-to-peak oscillation is
detected in the data (at the two-sigma level) from the longest baselines, which
we interpret as a possible disk hot-spot or companion. However, the oscillation
in our best data set is best explained with an unresolved spot located at a
projected distance of 10 AU at the 130 deg position angle and with a magnitude
difference of DeltaK = 3.9 and DeltaH = 3.6 mag moving away from the center at
a rate of 1.2 AU/yr. we propose to interpret this spot as the signature of a
companion of the central FU Ori system on an extremely eccentric orbit. We
speculate that the close encounter of this putative companion and the central
star could be the explanation of the initial photometric rise of the luminosity
of this object
The Palomar Testbed Interferometer
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared
interferometer located at Palomar Observatory, California. It was built as a
testbed for interferometric techniques applicable to the Keck Interferometer.
First fringes were obtained in July 1995. PTI implements a dual-star
architecture, tracking two stars simultaneously for phase referencing and
narrow-angle astrometry. The three fixed 40-cm apertures can be combined
pair-wise to provide baselines to 110 m. The interferometer actively tracks the
white-light fringe using an array detector at 2.2 um and active delay lines
with a range of +/- 38 m. Laser metrology of the delay lines allows for servo
control, and laser metrology of the complete optical path enables narrow-angle
astrometric measurements. The instrument is highly automated, using a
multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from
http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi
Differential phase technique with the Keck Interferometer
We present the motivation and development of the novel `differential phase' technique being developed for the Keck Interferometer with the goal of detecting faint companions near a bright source. The differential phase technique uses simultaneous phase measurements at several infrared wavelengths to detect the astrophysical signature produced by a chromatic, asymmetric brightness distribution. We discuss the origin of the differential phase signature and present results of test observations taken at the Palomar Testbed Interferometer. One important test result is the larger than expected effect of water vapor turbulence on these multi-wavelength observations due to the infrared dispersion of water. In order to reach the design goal of 0.1 milliradians, the phase noise caused by both temperature and water vapor fluctuations in the atmosphere must be corrected, and we discuss several ways to achieve this
- …