9 research outputs found

    A Spontaneous Mutation of the Rat Themis Gene Leads to Impaired Function of Regulatory T Cells Linked to Inflammatory Bowel Disease

    Get PDF
    Spontaneous or chemically induced germline mutations, which lead to Mendelian phenotypes, are powerful tools to discover new genes and their functions. Here, we report an autosomal recessive mutation that occurred spontaneously in a Brown-Norway (BN) rat colony and was identified as causing marked T cell lymphopenia. This mutation was stabilized in a new rat strain, named BNm for “BN mutated.” In BNm rats, we found that the T cell lymphopenia originated in the thymus, was intrinsic to CD4 T lymphocytes, and was associated with the development of an inflammatory bowel disease. Furthermore, we demonstrate that the suppressive activity of both peripheral and thymic CD4+ CD25bright regulatory T cells (Treg) is defective in BNm rats. Complementation of mutant animals with BN Treg decreases disease incidence and severity, thus suggesting that the impaired Treg function is involved in the development of inflammatory bowel disease in BNm rats. Moreover, the cytokine profile of effector CD4 T cells is skewed toward Th2 and Th17 phenotypes in BNm rats. Linkage analysis and genetic dissection of the CD4 T cell lymphopenia in rats issued from BNm×DA crosses allowed the localization of the mutation on chromosome 1, within a 1.5 megabase interval. Gene expression and sequencing studies identified a frameshift mutation caused by a four-nucleotide insertion in the Themis gene, leading to its disruption. This result is the first to link Themis to the suppressive function of Treg and to suggest that, in Themis-deficient animals, defect of this function is involved in intestinal inflammation. Thus, this study highlights the importance of Themis as a new target gene that could participate in the pathogenesis of immune diseases characterized by chronic inflammation resulting from a defect in the Treg compartment

    A natural variant of the TCR signaling molecule Vav1 reduces both effector T cell functions and susceptibility to neuroinflammation

    No full text
    International Congress of Immunology (ICI), Melbourne, AUSTRALIA, AUG 21-26, 2016International audienceno abstrac

    Genetic control of HgCl2-induced IgE and autoimmunity by a 117-kb interval on rat chromosome 9 through CD4 CD45RC(high) T cells

    No full text
    International audienceGold or mercury salts trigger a dramatic IgE response and a CD4 T-cell-dependent nephropathy in Brown-Norway (BN), but not in Lewis (LEW) rats. We previously identified the 1.1-Mb Iresp3 (immunoglobin response QTL3) locus on chromosome 9 that controls these gold salt-triggered immune disorders. In the present work, we investigated the genetic control of HgCl2-induced immunological disorders and assessed the relative contribution of the CD45RC(high) and CD45RC(low) CD4 T-cell subpopulations in this control. By using interval-specific congenic lines, we narrowed down Iresp3 locus to 117-kb and showed that BN rats congenic for the LEW 117-kb were protected from HgCl2-triggered IgE response and nephropathy. This 117-kb interval also controls CD45RC expression by CD4 T cells and the ability of CD45RC(high) CD4 T cells to trigger the autoimmune disorders resulting from HgCl2 administration. This 117-kb region contains four genes, including Vav1, a strong candidate gene according to its cellular function and exclusive expression in hematopoietic cells. Thus, this study highlights the role of the CD45RC(high) CD4 T-cell subpopulation in the opposite susceptibility of BN and LEW rats to HgCl2-triggered immune disorders and identifies a 117-kb interval on chromosome 9 that has a key role in their functions

    Studies of congenic lines in the Brown Norway rat model of Th2-mediated immunopathological disorders show that the aurothiopropanol sulfonate-induced immunological disorder (Aiid3) locus on chromosome 9 plays a major role compared to Aiid2 on chromosome 10.

    No full text
    Brown Norway (BN) rats treated with aurothiopropanol-sulfonate (Atps) constitute a model of Th2-mediated immunological disorders associated with elevated IgE responses and renal IgG deposits. Using F(2) offspring between Atps-susceptible BN and Atps-resistant Lewis rats, we had previously mapped three quantitative trait loci on chromosomes 9, 10, and 20 for which BN alleles increased susceptibility to Atps-induced immunological disorders (Aiid). In this study we have used congenic lines for the latter two quantitative trait loci, formerly called Atps2 and Atps3 and now named Aiid2 (chromosome 10) and Aiid3 (chromosome 9), for fine mapping and characterization of their impact on Atps-triggered reactions. In Aiid2 congenic lines, the gene(s) controlling part of the IgE response to Atps was mapped to an approximately 7-cM region, which includes the IL-4 cytokine gene cluster. Two congenic lines in which the introgressed segments shared only a portion of this 7-cM region, showed an intermediate IgE response, indicating the involvement of several genes within this region. Results from BN rats congenic for the Lewis Aiid3 locus, which we mapped to a 1.2-cM interval, showed a stronger effect of this region. In this congenic line, the Atps-triggered IgE response was 10-fold lower than in the BN parental strain, and glomerular IgG deposits were either absent or dramatically reduced. Further genetic and functional dissections of these loci should provide insights into pathways that lead to Th2-adverse reactions

    A Natural Variant of the T Cell Receptor-Signaling Molecule Vav1 Reduces Both Effector T Cell Functions and Susceptibility to Neuroinflammation

    No full text
    International audienceThe guanine nucleotide exchange factor Vav1 is essential for transducing T cell antigen receptor signals and therefore plays an important role in T cell development and activation. Our previous genetic studies identified a locus on rat chromosome 9 that controls the susceptibility to neuroinflammation and contains a non-synonymous polymorphism in the major candidate gene Vav1. To formally demonstrate the causal implication of this polymorphism, we generated a knock-in mouse bearing this polymorphism (Vav1(R63W)). Using this model, we show that Vav1(R63W) mice display reduced susceptibility to experimental autoimmune encephalomyelitis (EAE) induced by MOG35-55 peptide immunization. This is associated with a lower production of effector cytokines (IFN-gamma, IL-17 and GM-CSF) by autoreactive CD4 T cells. Despite increased proportion of Foxp3+ regulatory T cells in Vav1(R63W) mice, we show that this lowered cytokine production is intrinsic to effector CD4 T cells and that Treg depletion has no impact on EAE development. Finally, we provide a mechanism for the above phenotype by showing that the Vav1(R63W) variant has normal enzymatic activity but reduced adaptor functions. Together, these data highlight the importance of Vav1 adaptor functions in the production of inflammatory cytokines by effector T cells and in the susceptibility to neuroinflammation

    A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis.

    No full text
    Multiple sclerosis, the most common cause of progressive neurological disability in young adults, is a chronic inflammatory disease. There is solid evidence for a genetic influence in multiple sclerosis, and deciphering the causative genes could reveal key pathways influencing the disease. A genome region on rat chromosome 9 regulates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Using interval-specific congenic rat lines and association of single-nucleotide polymorphisms with inflammatory phenotypes, we localized the gene of influence to Vav1, which codes for a signal-transducing protein in leukocytes. Analysis of seven human cohorts (12,735 individuals) demonstrated an association of rs2546133-rs2617822 haplotypes in the first VAV1 intron with multiple sclerosis (CA: odds ratio, 1.18; CG: odds ratio, 0.86; TG: odds ratio, 0.90). The risk CA haplotype also predisposed for higher VAV1 messenger RNA expression. VAV1 expression was increased in individuals with multiple sclerosis and correlated with tumor necrosis factor and interferon-gamma expression in peripheral blood and cerebrospinal fluid cells. We conclude that VAV1 plays a central role in controlling central nervous system immune-mediated disease and proinflammatory cytokine production critical for disease pathogenesis

    The rat Toxo1 locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms

    No full text
    Toxoplasmosis is a healthcare problem in pregnant women and immunocompromised patients. Like humans, rats usually develop a subclinical chronic infection. LEW rats exhibit total resistance to Toxoplasma gondii infection, which is expressed in a dominant mode. A genome-wide search carried out in a cohort of F(2) progeny of susceptible BN and resistant LEW rats led to identify on chromosome 10 a major locus of control, which we called Toxo1. Using reciprocal BN and LEW lines congenic for chromosome 10 genomic regions from the other strain, Toxo1 was found to govern the issue of T. gondii infection whatever the remaining genome. Analyzes of rats characterized by genomic recombination within Toxo1, reduced the interval down to a 1.7-cM region syntenic to human 17p13. In vitro studies showed that the Toxo1-mediated refractoriness to T. gondii infection is associated with the ability of the macrophage to impede the proliferation of the parasite within the parasitophorous vacuole. In contrast, proliferation was observed in fibroblasts whatever the genomic origin of Toxo1. Furthermore, ex vivo studies indicate that macrophage controls parasitic infection spreading by a Toxo1-mediated mechanism. This forward genetics approach should ultimately unravel a major pathway of innate resistance to toxoplasmosis and possibly to other apicomplexan parasitic diseases
    corecore