86 research outputs found

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007–2015, characterized by several extreme flares. The ratio between the optical, X-ray and Îł -ray fluxes is very variable. The Îł -ray flux variations show a fair correlation with the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∌50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip

    An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur

    Get PDF
    V582 Aur is an FU Ori-type young eruptive star in outburst since similar to 1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04M(circle dot). The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Ha profile. The color variations strongly indicate that both the similar to 1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A(V) = 4.5 to 12.5mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10−410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100 Ό\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of ≈5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.3 10^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.17−0.11+0.13 RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 10−4+7 MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&

    Amerindian Helicobacter pylori Strains Go Extinct, as European Strains Expand Their Host Range

    Get PDF
    We studied the diversity of bacteria and host in the H. pylori-human model. The human indigenous bacterium H. pylori diverged along with humans, into African, European, Asian and Amerindian groups. Of these, Amerindians have the least genetic diversity. Since niche diversity widens the sets of resources for colonizing species, we predicted that the Amerindian H. pylori strains would be the least diverse. We analyzed the multilocus sequence (7 housekeeping genes) of 131 strains: 19 cultured from Africans, 36 from Spanish, 11 from Koreans, 43 from Amerindians and 22 from South American Mestizos. We found that all strains that had been cultured from Africans were African strains (hpAfrica1), all from Spanish were European (hpEurope) and all from Koreans were hspEAsia but that Amerindians and Mestizos carried mixed strains: hspAmerind and hpEurope strains had been cultured from Amerindians and hpEurope and hpAfrica1 were cultured from Mestizos. The least genetically diverse H. pylori strains were hspAmerind. Strains hpEurope were the most diverse and showed remarkable multilocus sequence mosaicism (indicating recombination). The lower genetic structure in hpEurope strains is consistent with colonization of a diversity of hosts. If diversity is important for the success of H. pylori, then the low diversity of Amerindian strains might be linked to their apparent tendency to disappear. This suggests that Amerindian strains may lack the needed diversity to survive the diversity brought by non-Amerindian hosts

    Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole

    Get PDF
    This is the author accepted manuscript. the final version is available from EDP Sciences via the DOI in this recordThe highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A∗ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈ 7650 km s-1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s-1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics

    Blazar spectral variability as explained by a twisted inhomogeneous jet

    Get PDF
    Blazars are active galactic nuclei, which are powerful sources of radiation whose central engine is located in the core of the host galaxy. Blazar emission is dominated by non-thermal radiation from a jet that moves relativistically towards us, and therefore undergoes Doppler beaming1. This beaming causes flux enhancement and contraction of the variability timescales, so that most blazars appear as luminous sources characterized by noticeable and fast changes in brightness at all frequencies. The mechanism that produces this unpredictable variability is under debate, but proposed mechanisms include injection, acceleration and cooling of particles2, with possible intervention of shock waves3,4 or turbulence5. Changes in the viewing angle of the observed emitting knots or jet regions have also been suggested as an explanation of flaring events6,7,8,9,10 and can also explain specific properties of blazar emission, such as intra-day variability11, quasi-periodicity12,13 and the delay of radio flux variations relative to optical changes14. Such a geometric interpretation, however, is not universally accepted because alternative explanations based on changes in physical conditions—such as the size and speed of the emitting zone, the magnetic field, the number of emitting particles and their energy distribution—can explain snapshots of the spectral behaviour of blazars in many cases15,16. Here we report the results of optical-to-radio-wavelength monitoring of the blazar CTA 102 and show that the observed long-term trends of the flux and spectral variability are best explained by an inhomogeneous, curved jet that undergoes changes in orientation over time. We propose that magnetohydrodynamic instabilities17 or rotation of the twisted jet6 cause different jet regions to change their orientation and hence their relative Doppler factors. In particular, the extreme optical outburst of 2016–2017 (brightness increase of six magnitudes) occurred when the corresponding emitting region had a small viewing angle. The agreement between observations and theoretical predictions can be seen as further validation of the relativistic beaming theory

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    The Campbells: lordship, literature and liminality

    Get PDF
    The Campbells have the potential to offer much to the theme of literature and borders, given that the kindred’s astonishing political success in the late medieval and early modern period depended heavily upon the ability to negotiate multiple frontiers: between Highlands and Lowlands; between Gaelic Scotland and Ireland, and, especially after the Reformation, with England and the matter of Britain. This paper will explore the literary dimension to Campbell expansionism, from the Book of the Dean of Lismore in the earlier sixteenth century, to poetry addressed to dukes of Argyll in the earlier eighteenth century. Particular attention will be paid to the literary proclivities of the household of the Campbells of Glenorchy on either side of what appears to be a major watershed in 1550; and to the agenda of the Campbell protĂ©gĂ© John Carswell, first post-Reformation bishop of the Isles, and author of the first printed book in Gaelic in either Scotland or Ireland, Foirm na n-Urrnuidheadh (‘The Form of Prayers’), published at Edinburgh in 1567
    • 

    corecore