3 research outputs found

    On the use of natural user interfaces in physical rehabilitation: a web-based application for patients with hip prosthesis

    Get PDF
    This study aims to develop a telemedicine platform for self-motor rehabilitation and remote monitoring by health professionals, in order to enhance recovery in patients after hip replacement. The implementation of such a technology is justified by medical (improvement of the recovery process by the possibility to perform rehabilitation exercises more frequently), economic (reduction of the number of medical appointments and the time patients spend at the hospital), mobility (diminution of the transportation to and from the hospital) and ethics (healthcare democratization and increased empowerment of the patient) purposes. The Kinect camera is used as a Natural User Interface to capture the physical exercises performed at home by the patients. The quality of the movement is evaluated in real-time by an assessment module implemented according to a Hidden-Markov Model approach. The results show a high accuracy in the evaluation of the movements (92% of correct classification). Finally, the usability of the platform is tested through the System Usability Scale (SUS). The overall SUS score is 81 out of 100, which suggests a good usability of the Web application. Further work will focus on the development of additional functionalities and an evaluation of the impact of the platform on the recovery process

    Smart Web-Based Platform to Support Physical Rehabilitation

    No full text
    The enhancement of ubiquitous and pervasive computing brings new perspectives in medical rehabilitation. In that sense, the present study proposes a smart, web-based platform to promote the reeducation of patients after hip replacement surgery. This project focuses on two fundamental aspects in the development of a suitable tele-rehabilitation application, which are: (i) being based on an affordable technology, and (ii) providing the patients with a real-time assessment of the correctness of their movements. A probabilistic approach based on the development and training of ten Hidden Markov Models (HMMs) is used to discriminate in real time the main faults in the execution of the therapeutic exercises. Two experiments are designed to evaluate the precision of the algorithm for classifying movements performed in the laboratory and clinical settings, respectively. A comparative analysis of the data shows that the models are as reliable as the physiotherapists to discriminate and identify the motion errors. The results are discussed in terms of the required setup for a successful application in the field and further implementations to improve the accuracy and usability of the system
    corecore