276 research outputs found

    At risk of being risky: The relationship between "brain age" under emotional states and risk preference.

    Get PDF
    Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10-25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception - a pattern exemplified greatest in young-adults (ages 18-21). The results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky.

    CRT-700.34 Short-Term Outcomes Among Aortic Valve Stenosis Patients Undergoing Impella-Supported High-Risk Percutaneous Coronary Intervention

    Get PDF
    Background: Among patients undergoing percutaneous coronary intervention (PCI), severe aortic stenosis (AS) is associated with an increased risk of adverse outcomes. Although the use of mechanical circulatory support with Impella has been shown to improve 90-day outcomes in patients undergoing high-risk PCI (HRPCI), there is little information about the safety of this approach in pts with severe AS. We, therefore, sought to evaluate the efficacy and safety outcomes of Impella-supported HRPCI among patients with varying severity of AS. Methods: We studied patients enrolled in PROTECT III—a multicenter study of patients undergoing Impella-supported HRPCI. Patients were classified according to the severity of AS: none/trivial, mild, moderate, and severe. The primary outcome was the rate of major adverse cardiac and cerebrovascular events (MACCE) at 90 days, defined as the composite of all-cause death, MI, stroke/ TIA, and revascularization. Secondary outcomes included in-hospital PCI-related complications, stroke/TIA, and vascular complications requiring surgery. Results: Of 596 patients with echocardiographic data, 490 had no/trivial AS, and 34, 27, and 45 had mild, moderate, or severe AS, respectively. Patients with AS were older, less likely to have diabetes, more likely to have left main disease, and had higher left ventricular ejection fractions (Table). Severely calcified lesions and the use of atherectomy were more frequent among patients with moderate or severe AS. There were no differences in rates of PCI-related complications, stroke/TIA, 30-day MACCE, or 90-day MACCE according to AS severity. Rates of transfusion were higher among patients with AS—regardless of severity. Conclusion: Among patients undergoing Impella-supported HRPCI, PCI-related complications and 90-day outcomes did not differ based on AS status or severity

    Constraints on aerosol nitrate photolysis as a potential source of HONO and NO_x

    Get PDF
    The concentration of nitrogen oxides (NO_x) plays a central role in controlling air quality. On a global scale, the primary sink of NO_x is oxidation to form HNO_3. Gas-phase HNO_3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO_3 undergoes photolysis 10–300 times more rapidly than gas-phase HNO_3. We present here constraints on the rate of particle-phase HNO_3 photolysis based on observations of NO_x and HNO_3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NO_x to HNO_3 ratios. Negligible to moderate enhancements of the HNO_3 photolysis rate in particles, 1–30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO_3 photolysis would not significantly affect the HNO_3 budget but could help explain observations of HONO and NO_x in highly aged air

    Constraints on aerosol nitrate photolysis as a potential source of HONO and NOx, Environmental Science and Technology

    Get PDF
    The concentration of nitrogen oxides (NOx) plays a central role in controlling air quality. On a global scale, the primary sink of NOx is oxidation to form HNO3. Gas-phase HNO3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO3 undergoes photolysis 10–300 times more rapidly than gas-phase HNO3. We present here constraints on the rate of particle-phase HNO3 photolysis based on observations of NOx and HNO3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NOx to HNO3 ratios. Negligible to moderate enhancements of the HNO3 photolysis rate in particles, 1–30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO3 photolysis would not significantly affect the HNO3 budget but could help explain observations of HONO and NOx in highly aged air

    Global change drivers and the risk of infectious disease

    Full text link
    Anthropogenic change is contributing to the rise in emerging infectious diseases, but it remains unclear which global change drivers most increase disease and under what contexts. We amassed a dataset from the literature that includes 1,832 observations of infectious disease responses to global change drivers across 1,202 host-parasite combinations. We found that biodiversity loss, climate change, and introduced species were associated with increases in disease-related endpoints or harm (i.e., enemy release for introduced species), whereas urbanization was associated with decreases in disease endpoints. Natural biodiversity gradients, deforestation, forest fragmentation, and most classes of chemical contaminants had non-significant effects on these endpoints. Overall, these results were consistent across human and non-human diseases. Context-dependent effects of the global change drivers on disease were common and are discussed. These findings will help better target disease management and surveillance efforts towards global change drivers that increase disease.One-Sentence SummaryHere we quantify which global change drivers increase infectious diseases the most to better target global disease management and surveillance efforts

    Constraints on aerosol nitrate photolysis as a potential source of HONO and NO_x

    Get PDF
    The concentration of nitrogen oxides (NO_x) plays a central role in controlling air quality. On a global scale, the primary sink of NO_x is oxidation to form HNO_3. Gas-phase HNO_3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO_3 undergoes photolysis 10–300 times more rapidly than gas-phase HNO_3. We present here constraints on the rate of particle-phase HNO_3 photolysis based on observations of NO_x and HNO_3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NO_x to HNO_3 ratios. Negligible to moderate enhancements of the HNO_3 photolysis rate in particles, 1–30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO_3 photolysis would not significantly affect the HNO_3 budget but could help explain observations of HONO and NO_x in highly aged air

    How well do computer-generated faces tap face expertise?

    Get PDF
    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces
    • …
    corecore