3,679 research outputs found

    Thermally activated escape rates of uniaxial spin systems with transverse field

    Full text link
    Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the line of constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is applied, a saddle point of the energy is formed, and high, moderate, and low damping regimes (similar to those for particles) appear. Here we present the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems. It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are separated by two crossovers.Comment: 4 PR pages, 3 figures, final published versio

    Field dependence of the temperature at the peak of the ZFC magnetization

    Full text link
    The effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization, MZFCM_{ZFC}, is studied using the recently obtained analytic results of Coffey et al. (Phys. Rev. Lett. {\bf 80}(1998) 5655) for the prefactor of the N\'{e}el relaxation time which allow one to precisely calculate the prefactor in the N\'{e}el-Brown model and thus the blocking temperature as a function of the coefficients of the Taylor series expansion of the magnetocrystalline anisotropy. The present calculations indicate that even a precise determination of the prefactor in the N\'{e}el-Brown theory, which always predicts a monotonic decrease of the relaxation time with increasing field, is insufficient to explain the effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization. On the other hand, we find that the non linear field-dependence of the magnetization along with the magnetocrystalline anisotropy appears to be of crucial importance to the existence of this maximum.Comment: 14 LaTex209 pages, 6 EPS figures. To appear in J. Phys.: Condensed Matte

    Study of the Mechanisms of Flux Pinning in Type 2 Superconductors

    Get PDF
    Flux pinning mechanisms in type-2 semiconductors and specific heat measurements on annealed and deformed pure niobium sample

    Monte Carlo simulation with time step quantification in terms of Langevin dynamics

    Full text link
    For the description of thermally activated dynamics in systems of classical magnetic moments numerical methods are desirable. We consider a simple model for isolated magnetic particles in a uniform field with an oblique angle to the easy axis of the particles. For this model, a comparison of the Monte Carlo method with Langevin dynamics yields new insight in the interpretation of the Monte Carlo process, leading to the implementation of a new algorithm where the Monte Carlo step is time-quantified. The numeric results for the characteristic time of the magnetisation reversal are in excellent agreement with asymptotic solutions which itself are in agreement with the exact numerical results obtained from the Fokker-Planck equation for the Neel-Brown model.Comment: 5 pages, Revtex, 4 Figures include

    Magnetization dynamics of two interacting spins in an external magnetic field

    Full text link
    The longitudinal relaxation time of the magnetization of a system of two exchange coupled spins subjected to a strong magnetic field is calculated exactly by averaging the stochastic Gilbert-Landau-Lifshitz equation for the magnetization, i.e., the Langevin equation of the process, over its realizations so reducing the problem to a system of linear differential-recurrence relations for the statistical moments (averaged spherical harmonics). The system is solved in the frequency domain by matrix continued fractions yielding the complete solution of the two-spin problem in external fields for all values of the damping and barrier height parameters. The magnetization relaxation time extracted from the exact solution is compared with the inverse relaxation rate from Langer's theory of the decay of metastable states, which yields in the high barrier and intermediate-to-high damping limits the asymptotic behaviour of the greatest relaxation time.Comment: 32 pages, 5 figures. The paper has been revised and new results added (e.g., Fig. 5

    Surface-induced cubic anisotropy in nanomagnets

    Full text link
    We investigate the effect of surface anisotropy in a spherical many-spin magnetic nanoparticle. By computing minor loops, two-dimensional (2D) and 3D energyscape, and by investigating the behavior of the net magnetization, we show that in the case of not too strong surface anisotropy the behavior of the many-spin particle may be modeled by that of a macrospin with an effective energy containing uniaxial and cubic anisotropy terms. This holds for both the transverse and N\'eel's surface anisotropy models.Comment: 7 pages, 8 figure

    Integral Relaxation Time of Single-Domain Ferromagnetic Particles

    Full text link
    The integral relaxation time \tau_{int} of thermoactivating noninteracting single-domain ferromagnetic particles is calculated analytically in the geometry with a magnetic field H applied parallel to the easy axis. It is shown that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the Fokker-Planck equation \Lambda_1 at low temperatures, starting from some critical value of H, is the consequence of the depletion of the upper potential well. In these conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier and intrawell relaxation processes.Comment: 8 pages, 3 figure

    Stochastic dynamics beyond the weak coupling limit: thermalization

    Full text link
    We discuss the structure and asymptotic long-time properties of coupled equations for the moments of a Brownian particle's momentum derived microscopically beyond the lowest approximation in the weak coupling parameter. Generalized fluctuation-dissipation relations are derived and shown to ensure convergence to thermal equilibrium at any order of perturbation theory.Comment: 6+ page

    Langevin dynamics in crossed magnetic and electric fields: Hall and diamagnetic fluctuations

    Get PDF
    Based on the classical Langevin equation, we have re-visited the problem of orbital motion of a charged particle in two dimensions for a normal magnetic field crossed with or without an in-plane electric bias. We are led to two interesting fluctuation effects: First, we obtain not only a longitudinal "work-fluctuation" relation as expected for a barotropic type system, but also a transverse work-fluctuation relation perpendicular to the electric bias. This "Hall fluctuation" involves the product of the electric and the magnetic fields. And second, for the case of harmonic confinement without bias, the calculated probability density for the orbital magnetic moment gives non-zero even moments, not derivable as field derivatives of the classical free energy.Comment: 4 pages, 2 figures, revised versio

    Role of interactions in ferrofluid thermal ratchets

    Full text link
    Orientational fluctuations of colloidal particles with magnetic moments may be rectified with the help of external magnetic fields with suitably chosen time dependence. As a result a noise-driven rotation of particles occurs giving rise to a macroscopic torque per volume of the carrier liquid. We investigate the influence of mutual interactions between the particles on this ratchet effect by studying a model system with mean-field interactions. The stochastic dynamics may be described by a nonlinear Fokker-Planck equation for the collective orientation of the particles which we solve approximately by using the effective field method. We determine an interval for the ratio between coupling strength and noise intensity for which a self-sustained rectification of fluctuations becomes possible. The ratchet effect then operates under conditions for which it were impossible in the absence of interactions.Comment: 18 pages, 10 figure
    corecore