460 research outputs found

    Design of urban furniture to enhance the soundscape: A case study

    Get PDF
    In modern urban scenarios all the aspects of the historical heritage, including public open spaces and ancient buildings, have to meet the high increase of density of infrastructures and constructions, with the consequent change of visual and sound environments. This in turn affects people’s quality of life. Because of the growing interest on this problem, this study investigates the relationship between soundscape and design solutions for urban furniture, considering technical and environmental feasibility of the designing process, from the materials characteristics, to the acoustic and psychoacoustic impact of the tool on the user. The process includes the acoustic suitability of 3D printing materials, the suitability of acoustic design using software simulation, the experimental assessment of the performance of the 3D printed prototype, and the statistical evaluation of the chosen studying parameters and conditions. This paper describes all the stages of the designing process, with a focus on the study of shapes and volumes of the prototype and on its impact on the user’s perception. FEM simulations and experimental tests performed in a semi-anechoic chamber allowed to validate the design process. These analyses proved that the designed prototype of urban furniture can not only positively influence the physical environment but also the psychoacoustic perception of it

    DFT-inspired methods for quantum thermodynamics

    Get PDF
    In the framework of quantum thermodynamics, we propose a method to quantitatively describe thermodynamic quantities for out-of-equilibrium interacting many-body systems. The method is articulated in various approximation protocols which allow to achieve increasing levels of accuracy, it is relatively simple to implement even for medium and large number of interactive particles, and uses tools and concepts from density functional theory. We test the method on the driven Hubbard dimer at half filling, and compare exact and approximate results. We show that the proposed method reproduces the average quantum work to high accuracy: for a very large region of parameter space (which cuts across all dynamical regimes) estimates are within 10% of the exact results

    Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracts of <it>Hypericum perforatum </it>(St. John's wort) have been traditionally recommended for a wide range of medical conditions, in particular mild-to-moderate depression. The present study was designed to investigate the effect of Hypericum perforatum treatment in a mouse model of anxiety/depressive-like behavior, induced by chronic corticosterone administration.</p> <p>Methods</p> <p>CD1 mice were submitted to 7 weeks corticosterone administration and then behavioral tests as Open Field (OF), Novelty-Suppressed Feeding (NSF), Forced Swim Test (FST) were performed. Cell proliferation in hippocampal dentate gyrus (DG) was investigated by both 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry techniques and stereological procedure was used to quantify labeled cells. Golgi-impregnation method was used to evaluate changes in dendritic spines in DG. Hypericum perforatum (30 mg/Kg) has been administered for 3 weeks and then neural development in the adult hippocampus and behavioral changes have been examined.</p> <p>Results</p> <p>The anxiety/depressive-like state due to chronic corticosterone treatment was reversed by exogenous administration of Hypericum perforatum; the proliferation of progenitor cells in mice hippocampus was significantly reduced under chronic corticosterone treatment, whereas a long term treatment with Hypericum perforatum prevented the corticosterone-induced decrease in hippocampal cell proliferation. Corticosterone-treated mice exhibited a reduced spine density that was ameliorated by Hypericum perforatum administration.</p> <p>Conclusion</p> <p>These results provide evidence of morphological adaptations occurring in mature hippocampal neurons that might underlie resilient responses to chronic stress and contribute to the therapeutic effects of chronic Hypericum perforatum treatment.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality in the world, with small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) comprising the two major cell types. Although these cell types can be distinguished readily at the histological level, knowledge of their underlying molecular differences is very limited. In this study, we compared 14 SCLC cell lines against 27 NSCLC cell lines using an integrated array comparative genomic hybridisation and gene expression profiling approach to identify subtype-specific disruptions. Using stringent criteria, we have identified 159 of the genes that are responsible for the different biology of these cell types. Sorting of these genes by their biological functions revealed the differential disruption of key components involved in cell cycle pathways. Our novel comparative combined genome and transcriptome analysis not only identified differentially altered genes, but also revealed that certain shared pathways are preferentially disrupted at different steps in these cell types. Small cell lung cancer exhibited increased expression of MRP5, activation of Wnt pathway inhibitors, and upregulation of p38 MAPK activating genes, while NSCLC showed downregulation of CDKN2A, and upregulation of MAPK9 and EGFR. This information suggests that cell cycle upregulation in SCLC and NSCLC occurs through drastically different mechanisms, highlighting the need for differential molecular target selection in the treatment of these cancers

    Phylogenetic relationships within Chamaecrista sect. Xerocalyx (Leguminosae, Caesalpinioideae) inferred from the cpDNA trnE-trnT intergenic spacer and nrDNA ITS sequences

    Get PDF
    Chamaecrista belongs to subtribe Cassiinae (Caesalpinioideae), and it comprises over 330 species, divided into six sections. The section Xerocalyx has been subjected to a profound taxonomic shuffling over the years. Therefore, we conducted a phylogenetic analysis using a cpDNA trnE-trnT intergenic spacer and nrDNA ITS/5.8S sequences from Cassiinae taxa, in an attempt to elucidate the relationships within this section from Chamaecrista. The tree topology was congruent between the two data sets studied in which the monophyly of the genus Chamaecrista was strongly supported. Our analyses reinforce that new sectional boundaries must be defined in the Chamaecrista genus, especially the inclusion of sections Caliciopsis and Xerocalyx in sect. Chamaecrista, considered here paraphyletic. The section Xerocalyx was strongly supported as monophyletic; however, the current data did not show C. ramosa (microphyllous) and C. desvauxii (macrophyllous) and their respective varieties in distinct clades, suggesting that speciation events are still ongoing in these specimens
    corecore