33 research outputs found

    Micro Factory: Concept d’une chaüne d’assemblage miniature, modulaire et propre

    Get PDF
    La manipulation et l’assemblage de microsystĂšmes (MEMS) nĂ©cessite des robots de haute prĂ©cision qui doivent fonctionner dans des environnements propres. Beaucoup des systĂšmes actuels ont un volume important et occupent une grande surface au sol par rapport Ă  la taille des piĂšces fabriquĂ©es. Le but du projet « Micro-Factory » est de dĂ©montrer la faisabilitĂ© d’une chaĂźne de production miniature et modulaire et de dĂ©velopper une mĂ©thodologie de conception de telles salles blanches miniatures et modulaires pour des microsystĂšmes. Cette mĂ©thodologie permettra de dĂ©finir rapidement la taille et la configuration de microfactory qui seront optimales pour chaque produit

    PocketFactory : a modular and miniature assembly chain including a clean environment

    Get PDF
    The manipulation and assembly of microsystems (MEMS) require accurate robots operating in a clean room environment. Available systems require usually large ground surface for small components and are bulky. Furthermore it is difficult to move it to another place. The main objective of the 'Pocket-factory' project is to develop miniaturized and modular clean production units for microsystems and establish a data base of needs and available accessories to quickly set up a production chain

    “Pocket Factory”: Concept of miniaturized modular cleanrooms

    Get PDF
    The manipulation and assembly of microsystems (MEMS) require accurate robots operating in a clean room environment. Available systems are bulky, thus requiring large ground surface for small components. Furthermore they have limited accuracy. The main objective of the 'Pocket-factory' project is to develop miniaturized and modular clean production units for microsystems and establish a methodology to quickly set them u

    Controller-observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system

    Full text link
    [EN] Rehabilitation is a hazardous task for a mechanical system, since the device has to interact with the human extremities without the hands-on experience the physiotherapist acquires over time. A gap needs to be filled in terms of designing effective controllers for this type of devices. In this respect, the paper describes the design of a model-based control for an electromechanical lower-limb rehabilitation system based on a parallel kinematic mechanism. A controller-observer was designed for estimating joint velocities, which are then used in a hybrid position/force control scheme. The model parameters are identified by customising an approach based on identifying only the relevant system dynamics parameters. Findings obtained through simulations show evidence of improvement in tracking performance compared with those where the velocity was estimated by numerical differentiation. The controller is also implemented in an actual electromechanical system for lower-limb rehabilitation tasks. Findings based on rehabilitation tasks confirm the findings from simulations.This work was partially financed by the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDERCICYT) under the project DPI2013-44227-R and by the Instituto U. de Automatica e Informatica Industrial (ai2) of the Universitat Politecnica de Valencia.Valera FernĂĄndez, Á.; DĂ­az-RodrĂ­guez, M.; VallĂ©s Miquel, M.; Oliver, E.; Mata Amela, V.; Page Del Pozo, AF. (2017). Controller-observer design and dynamic parameter identification for model-based control of an electromechanical lower-limb rehabilitation system. International Journal of Control. 90(4):702-714. https://doi.org/10.1080/00207179.2016.1215529S702714904Åström, K. J., & Murray, R. M. (2010). Feedback Systems. doi:10.2307/j.ctvcm4gdkAtkeson, C. G., An, C. H., & Hollerbach, J. M. (1986). Estimation of Inertial Parameters of Manipulator Loads and Links. The International Journal of Robotics Research, 5(3), 101-119. doi:10.1177/027836498600500306Chia Bejarano, N., Maggioni, S., De Rijcke, L., Cifuentes, C. A., & Reinkensmeyer, D. J. (2015). Robot-Assisted Rehabilitation Therapy: Recovery Mechanisms and Their Implications for Machine Design. Emerging Therapies in Neurorehabilitation II, 197-223. doi:10.1007/978-3-319-24901-8_8Berghuis, H., & Nijmeijer, H. (1993). A passivity approach to controller-observer design for robots. IEEE Transactions on Robotics and Automation, 9(6), 740-754. doi:10.1109/70.265918Briot, S., & Gautier, M. (2013). Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody System Dynamics, 33(1), 3-26. doi:10.1007/s11044-013-9403-6Canudas de Wit, C., & Fixot, N. (1991). Robot control via robust estimated state feedback. IEEE Transactions on Automatic Control, 36(12), 1497-1501. doi:10.1109/9.106170Canudas de Wit, C., & Slotine, J.-J. E. (1991). Sliding observers for robot manipulators. Automatica, 27(5), 859-864. doi:10.1016/0005-1098(91)90041-yCao, J., Xie, S. Q., Das, R., & Zhu, G. L. (2014). Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects. Medical Engineering & Physics, 36(12), 1555-1566. doi:10.1016/j.medengphy.2014.08.005Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542Cazalilla, J., VallĂ©s, M., Mata, V., DĂ­az-RodrĂ­guez, M., & Valera, A. (2014). Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models. Robotics and Computer-Integrated Manufacturing, 30(5), 468-477. doi:10.1016/j.rcim.2014.02.003De Jalon, J.G. & Bayo, E. (1994). Kinematic and dynamic simulation of multibody systems: the real-time challenge. New York: Springer Verlag.DĂ­az, I., Gil, J. J., & SĂĄnchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/759764DĂ­az-RodrĂ­guez, M., Iriarte, X., Mata, V., & Ros, J. (2009). On the Experiment Design for Direct Dynamic Parameter Identification of Parallel Robots. Advanced Robotics, 23(3), 329-348. doi:10.1163/156855308x397550DĂ­az-RodrĂ­guez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007Gautier, M. (1991). Numerical calculation of the base inertial parameters of robots. Journal of Robotic Systems, 8(4), 485-506. doi:10.1002/rob.4620080405Gautier, M., & Khalil, W. (s. f.). On the identification of the inertial parameters of robots. Proceedings of the 27th IEEE Conference on Decision and Control. doi:10.1109/cdc.1988.194738Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986Janabi-Sharifi, F., Hayward, V., & Chen, C.-S. J. (2000). Discrete-time adaptive windowing for velocity estimation. IEEE Transactions on Control Systems Technology, 8(6), 1003-1009. doi:10.1109/87.880606Janot, A., Gautier, M., Jubien, A., & Vandanjon, P. O. (2014). Comparison Between the CLOE Method and the DIDIM Method for Robots Identification. IEEE Transactions on Control Systems Technology, 22(5), 1935-1941. doi:10.1109/tcst.2014.2299544Janot, A., Vandanjon, P.-O., & Gautier, M. (2016). A revised Durbin-Wu-Hausman test for industrial robot identification. Control Engineering Practice, 48, 52-62. doi:10.1016/j.conengprac.2015.12.017JimĂ©nez-FabiĂĄn, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering & Physics, 34(4), 397-408. doi:10.1016/j.medengphy.2011.11.018Khalil, W., Vijayalingam, A., Khomutenko, B., Mukhanov, I., Lemoine, P., & Ecorchard, G. (2014). OpenSYMORO: An open-source software package for symbolic modelling of robots. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. doi:10.1109/aim.2014.6878246Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation, 6(1). doi:10.1186/1743-0003-6-20Meng, W., Liu, Q., Zhou, Z., Ai, Q., Sheng, B., & Xie, S. (Shane). (2015). Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 31, 132-145. doi:10.1016/j.mechatronics.2015.04.005Page, A., Candelas, P., & Belmar, F. (2006). On the use of local fitting techniques for the analysis of physical dynamic systems. European Journal of Physics, 27(2), 273-279. doi:10.1088/0143-0807/27/2/010Raibert, M. H., & Craig, J. J. (1981). Hybrid Position/Force Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control, 103(2), 126-133. doi:10.1115/1.3139652Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/b98888Saglia, J. A., Tsagarakis, N. G., Dai, J. S., & Caldwell, D. G. (2013). Control Strategies for Patient-Assisted Training Using the Ankle Rehabilitation Robot (ARBOT). IEEE/ASME Transactions on Mechatronics, 18(6), 1799-1808. doi:10.1109/tmech.2012.2214228VallĂ©s, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & DĂ­az-RodrĂ­guez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica, 35(10), 1939-1957. doi:10.1017/s0263574715000120VallĂ©s, M., Cazalilla, J. I., Valera, Á., Mata, V., & Page, Á. (2013). ImplementaciĂłn basada en el middleware OROCOS de controladores dinĂĄmicos pasivos para un robot paralelo. Revista Iberoamericana de AutomĂĄtica e InformĂĄtica Industrial RIAI, 10(1), 96-103. doi:10.1016/j.riai.2012.11.009VallĂ©s, M., DĂ­az-RodrĂ­guez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292Wu, F. X., Zhang, W. J., Li, Q., & Ouyang, P. R. (2002). Integrated Design and PD Control of High-Speed Closed-loop Mechanisms. Journal of Dynamic Systems, Measurement, and Control, 124(4), 522-528. doi:10.1115/1.1513179Yang, C., Huang, Q., & Han, J. (2012). Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot. Robotics and Computer-Integrated Manufacturing, 28(1), 14-23. doi:10.1016/j.rcim.2011.06.002Yoon, J., Ryu, J., & Lim, K.-B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(S1), S15-S33. doi:10.1002/rob.2015

    Differential game theory for versatile physical human-robot interaction

    Get PDF
    The last decades have seen a surge of robots working in contact with humans. However, until now these contact robots have made little use of the opportunities offered by physical interaction and lack a systematic methodology to produce versatile behaviours. Here, we develop an interactive robot controller able to understand the control strategy of the human user and react optimally to their movements. We demonstrate that combining an observer with a differential game theory controller can induce a stable interaction between the two partners, precisely identify each other’s control law, and allow them to successfully perform the task with minimum effort. Simulations and experiments with human subjects demonstrate these properties and illustrate how this controller can induce different representative interaction strategies

    Evaluation of parametric and nonparametric nonlinear adaptive controllers

    No full text
    corecore