784 research outputs found

    Activity Mediated Interactions in Soft Matter. Structure, Interactions, and Phase Transitions

    Get PDF
    [eng] In this thesis we asses the phenomena of arising interactions in soft matter in coexistence with soft active matter. As a non-equilibrium bath we introduce ensembles of self-propelled particles, granular shaken beds, and photo active catalytic particles. We start the thesis with a detailed study of the widely used Active Brownian Particle (ABP) model. This model exhibits a non-equilibrium phase transition which has been intensively studied in recent years, we have finally reported that this transition satisfies all features of equilibrium first order phase transitions. Then, we introduce aligning interactions in ABP and characterize the emergent collective phenomena. In parallel, we explore the emergent forces, from mechanical contact forces, in probe particles in suspensions of aligning active particles and horizontally shaken granular beds. We characterize the forces and identify the emergence of long range interactions in both systems, in aligning active particles long range attractive interactions appear as alignment is increased, and in granular shaken media when the pair of particles align in the shaking direction. Finally, we conclude this thesis with the study of emergent interactions in spherically symmetric systems of catalytic active particles. Symmetry does not permit such particles to propell but the symmetry is broken with the addition of neighboring particles. We model the pair interaction in terms of the relative velocity between particles, and proceed to explore the emergent structures in mixtures of catalytic magnetic particles, and passive particles. We have unveiled the formation of clusters of passive particles. The addition of magnetic interactions between active particles leads to the formation of ramified gel-like structures for dense configurations of active particles. In this case, experimentalists have checked the formation of structures with the same morphologies in experiments in the laboratory.[spa] En aquesta tesi abordem el fenomen de les interaccions emergents en matèria tova en coexistència amb matèria tova activa. Com a sistemes de matèria tova activa introduïm col·lectius de partícules autopropulsades, col·loides amb capacitat de catalitzar productes químics i medis granulars agitats. Primer de tot estudiem en detall un model molt estès per a partícules actives, el model de les partícules actives brownianes (ABP). D'aquest model estudiem amb detall una transició de fase de no equilibri i comprovem que la transició satisfà amb les característiques d'una transició en equilibri de primer ordre. Seguidament incorporem interaccions d'alineació en el model de partícules actives i procedim a estudiar les propietats col·lectives de les suspensions de partícules actives amb alineació. Per tal d'abordar l'objectiu de la tesi introduïm partícules de prova en suspensions de partícules actives, i en medis granulars amb forçament periòdic horitzontal, amb diferents paràmetres d'activitat per tal d'estudiar les forces, des d'un punt de vista mecànic, que emergeixen entre les parelles. Hem caracteritzat les forces i hem identificat l'aparició d'interaccions de llarg abast per sistemes de partícules amb alineació i en sistemes granulars en la direcció del forçament. Finalment, tanquem la tesi amb l'estudi i modelització d'interaccions emergents per a partícules catalítiques amb simetria esfèrica. La simetria no permet a les partícules d'autopropulsar-se però la presència de partícules al seu entorn sí que dóna lloc a interaccions, en forma de velocitats induïdes. Amb un model raonable de la interacció a distància hem calibrat la magnitud de la interacció amb sistemes experimentals i procedit a caracteritzar les estructures emergents per a mescles de partícules actives i passives que van des de la formació d'agregats en forma de clústers. L'addició d'interaccions magnètiques entre partícules actives permet la formació d'estructures ramificades de tipus gel. En aquest cas l'equip experimental ha pogut comparar l'aparició d'estructures amb les mateixes característiques al laboratori

    The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems

    Get PDF
    In this paper we propose a method to solve Solid Mechanics and fluid–structure interaction problems using always a fixed background mesh for the spatial discretization. The main feature of the method is that it properly accounts for the advection of information as the domain boundary evolves. To achieve this, we use an Arbitrary Lagrangian–Eulerian (ALE) framework, the distinctive characteristic being that at each time step results are projected onto a fixed, background mesh. For solid mechanics problems subject to large strains, the fixed‐mesh (FM)‐ALE method avoids the element stretching found in fully Lagrangian approaches. For FSI problems, FM‐ALE allows for the use of a single background mesh to solve both the fluid and the structure

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    Variational Multiscale error estimators for solid mechanics adaptive simulations: an Orthogonal Subgrid Scale approach

    Get PDF
    In this work we present a general error estimator for the finite element solution of solid mechanics problems based on the Variational Multiscale method. The main idea is to consider a rich model for the subgrid scales as an error estimator. The subscales are considered to belong to a space orthogonal to the finite element space (Orthogonal Subgrid Scales) and we take into account their contribution both in the element interiors and on the element boundaries (Subscales on the Element Boundaries). A simple analysis shows that the upper bound for the obtained error estimator is sharper than in other error estimators based on the Variational Multiscale Method. Numerical examples show that the proposed error estimator is an accurate approximation for the energy norm error and can be used both in simple linear constitutive models and in more complex non-linear cases.Peer ReviewedPostprint (author's final draft

    Variational Multiscale error estimators for solid mechanics adaptive simulations: an Orthogonal Subgrid Scale approach

    Get PDF
    In this work we present a general error estimator for the finite element solution of solid mechanics problems based on the Variational Multiscale method. The main idea is to consider a rich model for the subgrid scales as an error estimator. The subscales are considered to belong to a space orthogonal to the finite element space (Orthogonal Subgrid Scales) and we take into account their contribution both in the element interiors and on the element boundaries (Subscales on the Element Boundaries). A simple analysis shows that the upper bound for the obtained error estimator is sharper than in other error estimators based on the Variational Multiscale Method. Numerical examples show that the proposed error estimator is an accurate approximation for the energy norm error and can be used both in simple linear constitutive models and in more complex non-linear cases.Peer ReviewedPostprint (author's final draft

    Plagiarism detection using information retrieval and similarity measures based on image processing techniques

    Get PDF
    This paper describes the Barcelona Media Innovation Center participation in the 2nd International Competition on Plagiarism Detection. Particularly, our system focused on the external plagiarism detection task, which assumes the source documents are available. We present a two-step a approach. In the first step of our method, we build an information retrieval system based on Solr/Lucene, segmenting both suspicious and source documents into smaller texts.We perform a search based on bag-of-words which provides a first selection of potentially plagiarized texts. In the second step, each promising pair is further investigated. We implemented a sliding window approach that computes cosine distances between overlapping text segments from both the source and suspicious documents on a pair wise basis. As a result, a similarity matrix between text segments is obtained, which is smoothed by means of low-pass 2-D filtering. From the smoothed similarity matrix, plagiarized segments are identified by using image processing techniques. Our results were placed in the middle of the official ranking, which considered together two types of plagiarism: intrinsic and external.Postprint (published version

    Subscales on the element boundaries in the variational two-scale finite element method

    Get PDF
    In this paper, we introduce a way to approximate the subscales on the boundaries of the elements in a variational two-scale finite element approximation to flow problems. The key idea is that the subscales on the element boundaries must be such that the transmission conditions for the unknown, split as its finite element contribution and the subscale, hold. In particular, we consider the scalar convection–diffusion–reaction equation, the Stokes problem and Darcy’s problem. For these problems the transmission conditions are the continuity of the unknown and its fluxes through element boundaries. The former is automatically achieved by introducing a single valued subscale on the boundaries (for the conforming approximations we consider), whereas the latter provides the effective condition for approximating these values. The final result is that the subscale on the interelement boundaries must be proportional to the jump of the flux of the finite element component and the average of the subscale calculated in the element interiors
    corecore