72 research outputs found

    Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots

    Get PDF
    https://doi.org/10.1016/j.aca.2015.03.015A generic strategy based on the use of CdSe/ZnS Quantum Dots (QDs) as elemental labels for protein quantification, using immunoassays with elemental mass spectrometry (ICP-MS), detection is presented. In this strategy, streptavidin modified QDs (QDs-SA) are bioconjugated to a biotinylated secondary antibody (b-Ab2). After a multi-technique characterization of the synthesized generic platform (QDs-SAb-Ab2) it was applied to the sequential quantification of five proteins (transferrin, complement C3, apolipoprotein A1, transthyretin and apolipoprotein A4) at different concentration levels in human serum samples. It is shown how this generic strategy does only require the appropriate unlabeled primary antibody for each protein to be detected. Therefore, it introduces a way out to the need for the cumbersome and specific bioconjugation of the QDs to the corresponding specific recognition antibody for every target analyte (protein). Results obtained were validated with those obtained using UV–vis spectrophotometry and commercial ELISA Kits.This work was supported by the Spanish Ministry of Science and Innovation (MICINN, CTQ2010-16636), the European FEDER program co-financing, the “Plan de Ciencia, Tecnología e Innovación” of the Principado de Asturias (FICYT, IE13-031) and Agilent Technologies Foundation. A.R.M.B. and M.G.C thank the MICINN and “Gobierno del Principado de Asturias” for their Ph.D. funding through the FPU and Severo Ochoa (BP13-110) programs, respectively. M.C.P. “Catedrático Rafael del Pino en Oftalmología” and H.G.I. acknowledge financial support from the “Fundación Ma Cristina Masaveu Peterson” and The Glaucoma Foundation (NY, USA).https://doi.org/10.1016/j.aca.2015.03.01

    Role of GUCA1C in Primary Congenital Glaucoma and in the Retina: Functional Evaluation in Zebrafish

    Get PDF
    Primary congenital glaucoma (PCG) is a heterogeneous, inherited, and severe optical neuropathy caused by apoptotic degeneration of the retinal ganglion cell layer. Whole-exome sequencing analysis of one PCG family identified two affected siblings who carried a low-frequency homozygous nonsense GUCA1C variant (c.52G > T/p.Glu18Ter/rs143174402). This gene encodes GCAP3, a member of the guanylate cyclase activating protein family, involved in phototransduction and with a potential role in intraocular pressure regulation. Segregation analysis supported the notion that the variant was coinherited with the disease in an autosomal recessive fashion. GCAP3 was detected immunohistochemically in the adult human ocular ciliary epithelium and retina. To evaluate the ocular effect of GUCA1C loss-of-function, a guca1c knockout zebrafish line was generated by CRISPR/Cas9 genome editing. Immunohistochemistry demonstrated the presence of GCAP3 in the non-pigmented ciliary epithelium and retina of adult wild-type fishes. Knockout animals presented up-regulation of the glial fibrillary acidic protein in Müller cells and evidence of retinal ganglion cell apoptosis, indicating the existence of gliosis and glaucoma-like retinal damage. In summary, our data provide evidence for the role of GUCA1C as a candidate gene in PCG and offer new insights into the function of this gene in the ocular anterior segment and the retina.This research was funded by research grants from the “Instituto de Salud Carlos III/European Regional Development Fund (ERDF)” (PI15/01193, PI19/00208 and RD16/0008/0019, OFTARED), the Regional Ministry of Science and Technology of the Board of the Communities of “Castilla-La Mancha” (SBPLY/17/180501/000404; http://www.educa.jccm.es/idiuniv/es). SA-M was sponsored by the Regional Ministry of Science and Technology of the Board of the Communities of “Castilla-La Mancha” (PREJCCM2016/28)

    CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix

    Get PDF
    Abnormal development of the ocular anterior segment may lead to a spectrum of clinical phenotypes ranging from primary congenital glaucoma (PCG) to variable anterior segment dysgenesis (ASD). The main objective of this study was to identify the genetic alterations underlying recessive congenital glaucoma with ASD (CG-ASD). Next-generation DNA sequencing identified rare biallelic CPAMD8 variants in four patients with CG-ASD and in one case with PCG. CPAMD8 is a gene of unknown function and recently associated with ASD. Bioinformatic and in vitro functional evaluation of the variants using quantitative reverse transcription PCR and minigene analysis supported a loss-of-function pathogenic mechanism. Optical and electron microscopy of the trabeculectomy specimen from one of the CG-ASD cases revealed an abnormal anterior chamber angle, with altered extracellular matrix, and apoptotic trabecular meshwork cells. The CPAMD8 protein was immunodetected in adult human ocular fluids and anterior segment tissues involved in glaucoma and ASD (i.e., aqueous humor, non-pigmented ciliary epithelium, and iris muscles), as well as in periocular mesenchyme-like cells of zebrafish embryos. CRISPR/Cas9 disruption of this gene in F0 zebrafish embryos (96 hpf) resulted in varying degrees of gross developmental abnormalities, including microphthalmia, pharyngeal maldevelopment, and pericardial and periocular edemas. Optical and electron microscopy examination of these embryos showed iridocorneal angle hypoplasia (characterized by altered iris stroma cells, reduced anterior chamber, and collagen disorganized corneal stroma extracellular matrix), recapitulating some patients’ features. Our data support the notion that CPAMD8 loss-of-function underlies a spectrum of recessive CG-ASD phenotypes associated with extracellular matrix disorganization and provide new insights into the normal and disease roles of this gene
    corecore