2,155 research outputs found

    The Geography of the Globe

    Get PDF
    Geography is the study of the intimate interrelationship of mankind with his environment. So the Geography of The Globe is then the study of the relationship of all of the many peoples of the globe with the global environment in which they live

    Thermal degradation kinetics of aromatic ether polymers

    Get PDF
    Fluorinated polymers of substantial high performance such as perfluorocyclobutyl (PFCB) and fluorinated aryl vinyl ether (FAVE) polymers can readily be synthesized by thermal [2+2] cyclopolymerization as a melt or by classical polycondensation. These fluoropolymers naturally possess high thermal and chemical resistance, low conductivity properties, and other mechanical properties. In this work, a method using 0th order kinetics is proposed and thermal degradation studies were conducted on six different aromatic ether-based polymers to gauge trends in activation energy barrier and differences in thermal stability by 0th order degradation kinetics. The activation barrier (E_a) obtained can give accurate insight into the stability of the polymer based only on structure for external applications. Activation energies ranging from 17 to 41 kcal/mol were obtained for the various polymers. Overall, this study provides an established method using TGA for thermal stability studies through 0th order kinetics that can be potentially used for future lab applications

    Experimentally Constrained Molecular Relaxation: The Case of Glassy GeSe2

    Full text link
    An ideal atomistic model of a disordered material should contradict no experiments,and should also be consistent with accurate force fields (either {\it ab initio}or empirical). We make significant progress toward jointly satisfying {\it both} of these criteria using a hybrid reverse Monte Carlo approach in conjunction with approximate first principles molecular dynamics. We illustrate the method by studying the complex binary glassy material g-GeSe2_2. By constraining the model to agree with partial structure factors and {\it ab initio} simulation, we obtain a 647-atom model in close agreement with experiment, including the first sharp diffraction peak in the static structure factor. We compute the electronic state densities and compare to photoelectron spectroscopies. The approach is general and flexible.Comment: 6 pages, 4 figure

    From the Editors

    Get PDF

    Identifying Trippers and Non-Trippers Based on Knee Kinematics During Obstacle-Free Walking

    Get PDF
    Trips are a major cause of falls. Sagittal-plane kinematics affect clearance between the foot and obstacles, however, it is unclear which kinematic measures during obstacle-free walking are associated with avoiding a trip when encountering an obstacle. The purpose of this study was to determine kinematic factors during obstacle-free walking that are related to obstacle avoidance ability. It was expected that successful obstacle avoidance would be associated with greater peak flexion/dorsiflexion and range of motion (ROM), and differences in timing of peak flexion/dorsiflexion during swing of obstacle-free walking for the hip, knee and ankle. Three-dimensional kinematics were recorded as 35 participants (young adults age 18–45 (N = 10), older adults age 65+ without a history of falls (N = 10), older adults age 65+ who had fallen in the last six months (N = 10), and individuals who had experienced a stroke more than six months earlier (N = 5)) walked on a treadmill, under obstacle-free walking conditions with kinematic features calculated for each stride. A separate obstacle avoidance task identified trippers (multiple obstacle contact) and non-trippers. Linear discriminant analysis with sequential feature selection classified trippers and non-trippers based on kinematics during obstacle-free walking. Differences in classification performance and selected features (knee ROM and timing of peak knee flexion during swing) were evaluated between trippers and non-trippers. Non-trippers had greater knee ROM (P = .001). There was no significant difference in classification performance (P = .193). Individuals with reduced knee ROM during obstacle-free walking may have greater difficulty avoiding obstacles

    Electronic cigarettes and nicotine dependence: evolving products, evolving problems

    Get PDF
    Electronic cigarettes (ECIGs) use an electric heater to aerosolize a liquid that usually contains propylene glycol, vegetable glycerin, flavorants, and the dependence-producing drug nicotine. ECIG-induced nicotine dependence has become an important concern, as some ECIGs deliver very little nicotine while some may exceed the nicotine delivery profile of a tobacco cigarette. This variability is relevant to tobacco cigarette smokers who try to switch to ECIGs. Products with very low nicotine delivery may not substitute for tobacco cigarettes, so that ECIG use is accompanied by little reduced risk of cigarette-caused disease. Products with very high nicotine delivery may make quitting ECIGs particularly difficult should users decide to try. For non-smokers, the wide variability of ECIGs on the market is especially troublesome: low nicotine products may lead them to initiate nicotine self-administration and progress to higher dosing ECIGs or other products, and those that deliver more nicotine may produce nicotine dependence where it was not otherwise present. External regulatory action, guided by strong science, may be required to ensure that population-level nicotine dependence does not rise

    Electronic cigarettes and nicotine dependence: evolving products, evolving problems

    Get PDF
    Electronic cigarettes (ECIGs) use an electric heater to aerosolize a liquid that usually contains propylene glycol, vegetable glycerin, flavorants, and the dependence-producing drug nicotine. ECIG-induced nicotine dependence has become an important concern, as some ECIGs deliver very little nicotine while some may exceed the nicotine delivery profile of a tobacco cigarette. This variability is relevant to tobacco cigarette smokers who try to switch to ECIGs. Products with very low nicotine delivery may not substitute for tobacco cigarettes, so that ECIG use is accompanied by little reduced risk of cigarette-caused disease. Products with very high nicotine delivery may make quitting ECIGs particularly difficult should users decide to try. For non-smokers, the wide variability of ECIGs on the market is especially troublesome: low nicotine products may lead them to initiate nicotine self-administration and progress to higher dosing ECIGs or other products, and those that deliver more nicotine may produce nicotine dependence where it was not otherwise present. External regulatory action, guided by strong science, may be required to ensure that population-level nicotine dependence does not rise

    Polysaccharide Processing and Presentation by the MHCII Pathway

    Get PDF
    AbstractThe adaptive immune system functions through the combined action of antigen-presenting cells (APCs) and T cells. Specifically, class I major histocompatibility complex antigen presentation to CD8+ T cells is limited to proteosome-generated peptides from intracellular pathogens while the class II (MHCII) endocytic pathway presents only proteolytic peptides from extracellular pathogens to CD4+ T cells. Carbohydrates have been thought to stimulate immune responses independently of T cells; however, zwitterionic polysaccharides (ZPSs) from the capsules of some bacteria can activate CD4+ T cells. Here we show that ZPSs are processed to low molecular weight carbohydrates by a nitric oxide-mediated mechanism and presented to T cells through the MHCII endocytic pathway. Furthermore, these carbohydrates bind to MHCII inside APCs for presentation to T cells. Our observations begin to elucidate the mechanisms by which some carbohydrates induce important immunologic responses through T cell activation, suggesting a fundamental shift in the MHCII presentation paradigm
    • …
    corecore