1,117 research outputs found

    Engineering and programming manual: Two-dimensional kinetic reference computer program (TDK)

    Get PDF
    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket thrust chamber performance prediction methodology. The development of a methodology that includes all aspects of rocket engine performance from analytical calculation to test measurements, that is physically accurate and consistent, and that serves as an industry and government reference is presented. Recent interest in rocket engines that operate at high expansion ratio, such as most Orbit Transfer Vehicle (OTV) engine designs, has required an extension of the analytical methods used by the TDK computer program. Thus, the version of TDK that is described in this manual is in many respects different from the 1973 version of the program. This new material reflects the new capabilities of the TDK computer program, the most important of which are described

    Mesoscale acid deposition modeling studies

    Get PDF
    The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts

    Projected drought risk in 1.5°C and 2°C warmer climates

    Get PDF
    The large socioeconomic costs of droughts make them a crucial target for impact assessments of climate change scenarios. Using multiple drought metrics and a set of simulations with the Community Earth System Model targeting 1.5°C and 2°C above preindustrial global mean temperatures, we investigate changes in aridity and the risk of consecutive drought years. If warming is limited to 2°C, these simulations suggest little change in drought risk for the U.S. Southwest and Central Plains compared to present day. In the Mediterranean and central Europe, however, drought risk increases significantly for both 1.5°C and 2°C warming targets, and the additional 0.5°C of the 2°C climate leads to significantly higher drought risk. Our study suggests that limiting anthropogenic warming to 1.5°C rather than 2°C, as aspired to by the Paris Climate Agreement, may have benefits for future drought risk but that such benefits may be regional and in some cases highly uncertain

    Transport in rough self-affine fractures

    Full text link
    Transport properties of three-dimensional self-affine rough fractures are studied by means of an effective-medium analysis and numerical simulations using the Lattice-Boltzmann method. The numerical results show that the effective-medium approximation predicts the right scaling behavior of the permeability and of the velocity fluctuations, in terms of the aperture of the fracture, the roughness exponent and the characteristic length of the fracture surfaces, in the limit of small separation between surfaces. The permeability of the fractures is also investigated as a function of the normal and lateral relative displacements between surfaces, and is shown that it can be bounded by the permeability of two-dimensional fractures. The development of channel-like structures in the velocity field is also numerically investigated for different relative displacements between surfaces. Finally, the dispersion of tracer particles in the velocity field of the fractures is investigated by analytic and numerical methods. The asymptotic dominant role of the geometric dispersion, due to velocity fluctuations and their spatial correlations, is shown in the limit of very small separation between fracture surfaces.Comment: submitted to PR

    Bypassing nearest hospital for more distant neuroscience care in head-injured adults with suspected traumatic brain injury: findings of the head injury transportation straight to neurosurgery (HITS-NS) pilot cluster randomised trial

    Get PDF
    OBJECTIVE: Reconfiguration of trauma services, with direct transport of patients with traumatic brain injury (TBI) to specialist neuroscience centres (SNCs)-bypassing non-specialist acute hospitals (NSAHs), could improve outcomes. However, delays in stabilisation of airway, breathing and circulation (ABC) may worsen outcomes when compared with selective secondary transfer from nearest NSAH to SNC. We conducted a pilot cluster randomised controlled trial to determine the feasibility and plausibility of bypassing suspected patients with TBI -directly into SNCs-producing a measurable effect. SETTING: Two English Ambulance Services. PARTICIPANTS: 74 clusters (ambulance stations) were randomised within pairs after matching for important characteristics. Clusters enrolled head-injured adults-injured nearest to an NSAH-with internationally accepted TBI risk factors and stable ABC. We excluded participants attended by Helicopter Emergency Medical Services or who were injured more than 1 hour by road from nearest SNC. INTERVENTIONS: Intervention cluster participants were transported directly to an SNC bypassing nearest NSAH; control cluster participants were transported to nearest NSAH with selective secondary transfer to SNC. OUTCOMES: Trial recruitment rate (target n=700 per annum) and percentage with TBI on CT scan (target 80%) were the primary feasibility outcomes. 30-day mortality, 6-month Extended Glasgow Outcome Scale and quality of life were secondary outcomes. RESULTS: 56 ambulance station clusters recruited 293 patients in 12 months. The trial arms were similar in terms of age, conscious level and injury severity. Less than 25% of recruited patients had TBI on CT (n=70) with 7% (n=20) requiring neurosurgery. Complete case analysis showed similar 30-day mortality in the two trial arms (control=8.8 (2.7-14.0)% vs intervention=9.4(2.3-14.0)%). CONCLUSION: Bypassing patients with suspected TBI to SNCs gives an overtriage (false positive) ratio of 13:1 for neurosurgical intervention and 4:1 for TBI. A measurable effect from a full trial of early neuroscience care following bypass is therefore unlikely. TRIAL REGISTRATION NUMBER: ISRCTN68087745

    Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

    Get PDF
    The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30

    An operational analysis of Lake Surface Water Temperature

    Get PDF
    Operational analyses of Lake Surface Water Temperature (LSWT) have many potential uses including improvement of numerical weather prediction (NWP) models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA) product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST) which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K) compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009). It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures

    The atrial and ventricular myocardial proteome of endstage lamin heart disease

    Get PDF
    Lamins A/C (encoded by LMNA gene) can lead to dilated cardiomyopathy (DCM). This pilot study sought to explore the postgenomic phenotype of end-stage lamin heart disease. Consecutive patients with end-stage lamin heart disease (LMNA-group, n = 7) and ischaemic DCM (ICM-group, n = 7) undergoing heart transplantation were prospectively enrolled. Samples were obtained from left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and interventricular septum (IVS), avoiding the infarcted myocardial segments in the ICM-group. Samples were analysed using a discovery 'shotgun' proteomics approach. We found that 990 proteins were differentially abundant between LMNA and ICM samples with the LA being most perturbed (16-fold more than the LV). Abundance of lamin A/C protein was reduced, but lamin B increased in LMNA LA/RA tissue compared to ICM, but not in LV/RV. Carbonic anhydrase 3 (CA3) was over-abundant across all LMNA tissue samples (LA, LV, RA, RV, and IVS) when compared to ICM. Transthyretin was more abundant in the LV/RV of LMNA compared to ICM, while sarcomeric proteins such as titin and cardiac alpha-cardiac myosin heavy chain were generally less abundant in RA/LA of LMNA. Protein expression profiling and enrichment analysis pointed towards sarcopenia, extracellular matrix remodeling, deficient myocardial energetics, redox imbalances, and abnormal calcium handling in LMNA samples. Compared to ICM, end-stage lamin heart disease is a biventricular but especially a biatrial disease appearing to have an abundance of lamin B, CA3 and transthyretin, potentially hinting to compensatory responses
    corecore