16 research outputs found

    [Notice to Mrs. Martha Parks, 26 July 1907]

    No full text
    An official notice of the allowance of the claim for the Widow's Pension of Mrs. Martha Parks from Milo B. Stevens & Co

    Cancer stem cells, epithelial-mesenchymal transition, ATP and their roles in drug resistance in cancer

    No full text
    The cancer stem cell (CSC) state and epithelial-mesenchymal transition (EMT) activation are tightly interconnected. Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes to maintain low reactive oxygen species levels and stemness, enhanced drug transporters, anti-apoptotic machinery and DNA repair system. Factors present in the tumor microenvironment such as hypoxia and the communication with non-cancer stromal cells also promote cancer cells to enter the EMT/CSC state and display related resistance. ATP, particularly the high levels of intratumoral extracellular ATP functioning through both signaling pathways and ATP internalization, induces and regulates EMT and CSC. The three of them work together to enhance drug resistance. New findings in each of these factors will help us explore deeper into mechanisms of drug resistance and suggest new resistance-associated markers and therapeutic targets

    Rare germline alterations of myeloperoxidase predispose to myeloid neoplasms

    No full text
    Myeloperoxidase (MPO) gene alterations with variable clinical penetrance have been found in hereditary MPO deficiency, but their leukemia association in patients and carriers has not been established. Germline MPO alterations were found to be significantly enriched in myeloid neoplasms: 28 pathogenic/likely pathogenic variants were identified in 100 patients. The most common alterations were c.2031-2 A > C, R569W, M519fs* and Y173C accounting for about half of the cases. While functional experiments showed that the marrow stem cell pool of Mpo(-/-) mice was not increased, using competitive repopulation demonstrated that Mpo(-/-) grafts gained growth advantage over MPO wild type cells. This finding also correlated with increased clonogenic potential after serial replating in the setting of H2O2-induced oxidative stress. Furthermore, we demonstrated that H2O2-induced DNA damage and activation of error-prone DNA repair may result in secondary genetic damage potentially predisposing to leukemia leukemic evolution. In conclusion, our study for the first time demonstrates that germline MPO variants may constitute risk alleles for MN evolution
    corecore