43 research outputs found
Doctor of Philosophy
dissertationPeriodic temperature measurements in the DOI/GTN-P Deep Borehole Array on the western Arctic Slope of Alaska have shown a strong near-surface permafrost warming over the last 40 years, particularly since ⟠1990. Due to the manner in which these deep wells were drilled, the portion of the observed permafrost warming caused by climate change has remained unclear. Other factors that have strongly influenced temperatures near the wellbores include the heat deposited into permafrost during drilling and local-landscape changes associated with drilling operations (creation of reserve pits and drill pads). Multidimensional heat-transfer models capable of assessing the magnitude of the drilling and local-landscape disturbances near the wellbores have not been available. For the western Arctic Slope, such models must be capable of simulating heat-transfer processes in layered fine-grained mudrocks whose thermal properties are highly nonlinear due to the occurrence of unfrozen water at temperatures well below 0°C. An assessment of the drilling and landscape-change effects also requires knowledge of the specific thermophysical properties occurring at the well sites. Little information has been available about these properties on the western Arctic Slope. To establish the portion of the observed permafrost warming related to drilling and landscape-change effects, multidimensional (2-D cylindrical, 3-D cartesian) numerical heat-transfer models were created that simulate heat flow in layered heterogenous materials surrounding a wellbore, phase changes, and the unfrozen water properties of a wide range of fine-grained sediments. Using these models in conjunction with the borehole temperature measurements, the mean thermophysical properties of permafrost rock units on the western Arctic Slope were determined using an optimization process. Incorporation of local meteorological information into the optimization allows a more refined estimate of the thermal properties to be determined at a well site. Applying this methodology to the East Simpson #1 well on the Beaufort Sea coast (70°55.046'N, 154°37.286'W), the freezing point of permafrost is found to be -1.05°C at this site and thermal diffusivities range 0.22-0.40 à 10 -6 m2 s-1. Accounting for the drilling and landscape-change effects, tundra adjacent to East Simpson is found to have warmed 5.1 K since the mid-1880s. Of this, 3.1 K (60%) of the warming has occurred since 1970
Modeling Englacial Radar Attenuation at Siple Dome, West Antarctica, Using Ice Chemistry and Temperature Data
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet
Greenland and Canadian Arctic ice temperature profiles database
Here, we present a compilation of 95 ice temperature profiles from 85 boreholes from the Greenland ice sheet and peripheral ice caps, as well as local ice caps in the Canadian Arctic. Profiles from only 31 boreholes (36â%) were previously available in open-access data repositories. The remaining 54 borehole profiles (64â%) are being made digitally available here for the first time. These newly available profiles, which are associated with pre-2010 boreholes, have been submitted by community members or digitized from published graphics and/or data tables. All 95 profiles are now made available in both absolute (meters) and normalized (0 to 1 ice thickness) depth scales and are accompanied by extensive metadata. These metadata include a transparent description of data provenance. The ice temperature profiles span 70Â years, with the earliest profile being from 1950 at Camp VI, West Greenland. To highlight the value of this database in evaluating ice flow simulations, we compare the ice temperature profiles from the Greenland ice sheet with an ice flow simulation by the Parallel Ice Sheet Model (PISM). We find a cold bias in modeled near-surface ice temperatures within the ablation area, a warm bias in modeled basal ice temperatures at inland cold-bedded sites, and an apparent underestimation of deformational heating in high-strain settings. These biases provide process level insight on simulated ice temperatures
Recommended from our members
Onset of deglacial warming in West Antarctica driven by local orbital forcing
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate[superscript 1,2]. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago[superscript 3,4]. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently[superscript 2,5]. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere[superscript 6] associated with an abrupt decrease in Atlantic meridional overturning circulation[superscript 7]. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.Keywords: Last glacial period, Carbon Dioxide, High resolution, Chronology, Ice core, Circulation, Abrupt climate change, Atmospheric Co2, Greenland, Polar ic
Recommended from our members
Precise interpolar phasing of abrupt climate change during the last ice age
The last glacial period exhibited abrupt DansgaardâOeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archivesš. Ice cores show that Antarctica cooled during the warm phases of the Greenland DansgaardâOeschger cycle and vice versa[superscript 2,3], suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw[superscript 4â6]. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events[superscript 7â9]. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision[superscript 2,3,10]. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 Âą 92 years (2Ď) for DansgaardâOeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 Âą 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of DansgaardâOeschger dynamics
The Use of Borehole Temperature Measurements to Infer Climatic Changes in Arctic Alaska
Periodic temperature measurements in the DOI/GTN-P Deep Borehole Array on the western Arctic Slope of Alaska have shown a strong near-surface permafrost warming over the last 40 years, particularly since âź 1990. Due to the manner in which these deep wells were drilled, the portion of the observed permafrost warming caused by climate change has remained unclear. Other factors that have strongly influenced temperatures near the wellbores include the heat deposited into permafrost during drilling and local-landscape changes associated with drilling operations (creation of reserve pits and drill pads). Multidimensional heat-transfer models capable of assessing the magnitude of the drilling and local-landscape disturbances near the wellbores have not been available. For the western Arctic Slope, such models must be capable of simulating heat-transfer processes in layered fine-grained mudrocks whose thermal properties are highly nonlinear due to the occurrence of unfrozen water at temperatures well below 0°C. An assessment of the drilling and landscape-change effects also requires knowledge of the specific thermophysical properties occurring at the well sites. Little information has been available about these properties on the western Arctic Slope. To establish the portion of the observed permafrost warming related to drilling and landscape-change effects, multidimensional (2-D cylindrical, 3-D cartesian) numerical heat-transfer models were created that simulate heat flow in layered heterogenous materials surrounding a wellbore, phase changes, and the unfrozen water properties of a wide range of fine-grained sediments. Using these models in conjunction with the borehole temperature measurements, the mean thermophysical properties of permafrost rock units on the western Arctic Slope were determined using an optimization process. Incorporation of local meteorological information into the optimization allows a more refined estimate of the thermal properties to be determined at a well site. Applying this methodology to the East Simpson #1 well on the Beaufort Sea coast (70°55.046'N, 154°37.286'W), the freezing point of permafrost is found to be â1.05°C at this site and thermal diffusivities range 0.22â0.40 Ă 10 â6 m2 sâ1. Accounting for the drilling and landscape-change effects, tundra adjacent to East Simpson is found to have warmed 5.1 K since the mid-1880s. Of this, 3.1 K (60%) of the warming has occurred since 1970
Reconstructed global monthly land air temperature dataset (1880â2017)
Abstract Land surface air temperature is an essential climate variable for understanding rapid global environmental changes. Sparse network coverage prior to the 1950s is a significant source of uncertainty in global climate change evaluations. Recognizing the importance of spatial coverage, more stations are continually being added to global climate networks. A challenge is how to best use the information introduced by the new station observations to enhance our understanding and assessment of global climate states and changes, particularly for times prior to the midâ20th century. In this study, Data INterpolating Empirical Orthogonal Functions (DINEOF) were used to reconstruct mean monthly air temperatures from the Global Historical Climatology Networkâmonthly (GHCNm version 4) over the land surface from 1880 through 2017. The final reconstructed air temperature dataset covers about 95% of the global land surface area, improving the spatial coverage by ~80% during 1880â1900 and by 10%â20% since the 1950s. Validation tests show that the mean absolute error of the reconstructed data is less than 0.82°C. Comparison with the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model output shows that the reconstructed dataset substantially reduces the bias in global datasets caused by sparse station coverage, particularly before the 1950s