9 research outputs found

    Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana

    Get PDF
    Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained

    Copepods in turbulence: laboratory velocity and acceleration studies using high speed cameras

    No full text
    International audiencePlanktonic copepods are tiny crustaceans, with a typical size of the order of mm, living in suspension in marine or freshwaters during their entire life cycle. They have swimming and jumping abilities and are known to be well adapted to their turbulent environment. Turbulence is known to increase their contact rate and feeding flux. However too intense turbulence is believed to have a negative effect so that a qualitative bell-shape is classically invoked to represent the contact rate of copepods versus turbulence intensity. In this framework, the objective of this work is to quantify the influence of ambient turbulence on copepod's behavior, using trajectory analysis. In this work, the motions of copepods were filmed using an infrared high-speed camera (1000 fps) in a turbulent environment, in the dark to avoid phototropism. The custom-made experimental set-up has been built-up in order to obtain in a central zone an isotropic and homogeneous turbulence representative of the natural environment. The flow was characterized with different tracer sizes at different turbulence intensities. Copepods are filmed and the trajectories are extracted using signal processing routines. The instantaneous velocity, tangential and centripetal accelerations, and the local curvature are extracted for each trajectory. Their pdfs are computed, as well as different statistical moments: these indicators are studied at varying the turbulence intensity level (Reynolds number). Particles of different sizes (100 and 600 microns of mean diameters) and dead copepods are compared to living copepods statistics. This strategy allows to precisely characterize the copepods behavioral activity in relation with ambient turbulence. Ecological interpretations are drawn from the experimental results

    The high efficiency of photosystem i in the green Alga Chlamydomonas reinhardtii is maintained after the antenna size is substantially increased by the association of light-harvesting complexes II

    No full text
    Photosystems (PS) I and II activities depend on their lightharvesting capacity and trapping efficiency, which vary in different environmental conditions. For optimal functioning, these activities need to be balanced. This is achieved by redistribution of excitation energy between the two photosystems via the association and disassociation of light-harvesting complexes (LHC) II, in a process known as state transitions. Here we study the effect of LHCII binding to PSI on its absorption properties and trapping efficiency by comparing time-resolved fluorescence kinetics of PSI-LHCI and PSI-LHCI-LHCII complexes of Chlamydomonas reinhardtii. PSI-LHCI-LHCII of C. reinhardtii is the largest PSI supercomplex isolated so far and contains seven Lhcbs, in addition to the PSI core and the nine Lhcas that compose PSI-LHCI, together binding ∌320 chlorophylls. The average decay time for PSI-LHCI-LHCII is ∌65 ps upon 400 nm excitation (15 ps slower than PSI-LHCI) and ∌78 ps upon 475 nm excitation (27 ps slower). The transfer of excitation energy from LHCII to PSI-LHCI occurs in ∌60 ps. This relatively slow transfer, as compared with that from LHCI to the PSI core, suggests loose connectivity between LHCII and PSI-LHCI. Despite the relatively slow transfer, the overall decay time of PSI-LHCI-LHCII remains fast enough to assure a 96% trapping efficiency, which is only 1.4% lower than that of PSI-LHCI, concomitant with an increase of the absorption cross section of 47%. This indicates that, at variance with PSII, the design of PSI allows for a large increase of its light-harvesting capacities

    The Agiturb laboratory turbulence generation system and its application to plankton studies: zooplankton and phytoplankton

    No full text
    International audiencePlankton species live in a turbulent flow and are fully adapted to it. They have specific behaviour and responses related to turbulence characteristics and intensities, that are still largely unknown. Turbulence systems in the laboratory are needed to perform controled experiments with different zooplankton and phytoplankton species. Here we present the Agiturb turbulence generation system and some first results using different plankton species. In the Agiturb system, the turbulent flow is produced using four contra-rotating agitators that are place under a cubic tank. The model for such flow is the so-called “four-roll mill” proposed by G.I. Taylor in 1934 to generate a statistically stationary, spatially inhomogeneous flow with compression and stretching. In our experiment, the flow close to the agitators is a free flow similar to the four-roll mill, without the cylindrical rolls. The injection of the energy in the flow is produced by 4 stirring bars activated by 4 magnetic stirrers situated at symmetric positions, the centers being placed at one-fourth of the width of the tank. The cubic tank is almost half-full with 15 liters of sea water. For each experiment, the magnitude of the rotation rate of each agitator was identical, with two agitators rotating clockwise and two anti-clockwise, the same directions being along the diagonal. Different values of the rotation rate were chosen to reach different turbulence levels, characterized by the microscale Reynolds number Rλ going from 130 to 360. We present the result of two different experiments: the first one is a record, using a high speed camera in the infrared, of copepods trajectories, at different turbulent intensities, in order to see an optimal Reynolds number for copepods swimming activities (Acartia tonsa). The second one is a systematic study of the proliferation of diatoms under different turbulent intensities (Pseudo-nitzschia). In both cases different rotation rates of the system are considered, and an optimal turbulence level has been found, with maximum swimming activity for copepods and maximum growth rate for diatoms
    corecore