4,773 research outputs found
Leptons from Dark Matter Annihilation in Milky Way Subhalos
Numerical simulations of dark matter collapse and structure formation show
that in addition to a large halo surrounding the baryonic component of our
galaxy, there also exists a significant number of subhalos that extend hundreds
of kiloparsecs beyond the edge of the observable Milky Way. We find that for
dark matter (DM) annihilation models, galactic subhalos can significantly
modify the spectrum of electrons and positrons as measured at our galactic
position. Using data from the recent Via Lactea II simulation we include the
subhalo contribution of electrons and positrons as boundary source terms for
simulations of high energy cosmic ray propagation with a modified version of
the publicly available GALPROP code. Focusing on the DM DM -> 4e annihilation
channel, we show that including subhalos leads to a better fit to both the
Fermi and PAMELA data. The best fit gives a dark matter particle mass of 1.2
TeV, for boost factors of 90 in the main halo and 1950-3800 in the subhalos
(depending on assumptions about the background), in contrast to the 0.85 TeV
mass that gives the best fit in the main halo-only scenario. These fits suggest
that at least a third of the observed electron cosmic rays from DM annihilation
could come from subhalos, opening up the possibility of a relaxation of recent
stringent constraints from inverse Compton gamma rays originating from the
high-energy leptons.Comment: 8 pages, 13 figures; added referenc
Triaxiality and the determination of the cubic shape parameter K3 from five observables
The absolute and the relative quadrupole shape invariants q3 and K3 provide a
model independent measure of triaxiality for beta-rigid nuclei. We will show
that one can obtain q3 and K3 from a small number of observables. The
approximations which are made will be shown to hold within a few percent both
in the rigid triaxial rotor model and the interacting boson model. The shape
parameter K3 is given for an exemplary set of nuclei and is translated into
effective values of the geometrical deformation parameters beta and gamma.Comment: 16 pages, 4 figure
Reactivation and Precise IPN Localization of the Soft Gamma Repeater SGR1900+14
In 1998 May, the soft gamma repeater SGR1900+14 emerged from several years of
quiescence and emitted a series of intense bursts, one with a time history
unlike any previously observed from this source. Triangulation using Ulysses,
BATSE, and KONUS data give a 1.6 square arcminute error box near the galactic
supernova remnant G42.8+0.6. This error box contains a quiescent soft X-ray
source which is probably a neutron star associated with the soft repeater.Comment: Accepted for publication in the Astrophysical Journal Letter
A giant, periodic flare from the soft gamma repeater SGR1900+14
Soft gamma repeaters are high-energy transient sources associated with
neutron stars in young supernova remnants. They emit sporadic, short (~ 0.1 s)
bursts with soft energy spectra during periods of intense activity. The event
of March 5, 1979 was the most intense and the only clearly periodic one to
date. Here we report on an even more intense burst on August 27, 1998, from a
different soft gamma repeater, which displayed a hard energy spectrum at its
peak, and was followed by a ~300 s long tail with a soft energy spectrum and a
dramatic 5.16 s period. Its peak and time integrated energy fluxes at Earth are
the largest yet observed from any cosmic source. This event was probably
initiated by a massive disruption of the neutron star crust, followed by an
outflow of energetic particles rotating with the period of the star. Comparison
of these two bursts supports the idea that magnetic energy plays an important
role, and that such giant flares, while rare, are not unique, and may occur at
any time in the neutron star's activity cycle.Comment: Accepted for publication in Natur
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
Multistate dark matter (DM) models with small mass splittings and couplings
to light hidden sector bosons have been proposed as an explanation for the
PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal
over a wide range of DM density profiles, in the framework of concrete models
with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes
with standard model hypercharge. The gauge coupling is bounded from below by
the DM relic density, and the Sommerfeld enhancement factor is explicitly
computable for given values of the DM and gauge boson masses M, mu and the
(largest) dark matter mass splitting delta M_{12}. Sommerfeld enhancement is
stronger at the galactic center than near the Sun because of the radial
dependence of the DM velocity profile, which strengthens the inverse Compton
(IC) gamma ray constraints relative to usual assumptions. We find that the
PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model
predictions, and with CMB and Fermi gamma ray constraints, for M ~ 800 GeV, mu
~ 200 MeV, and a dark matter profile with noncuspy Einasto parameters alpha >
0.20, r_s ~ 30 kpc. We also find that the annihilating DM must provide only a
subdominant (< 0.4) component of the total DM mass density, since otherwise the
boost factor due to Sommerfeld enhancement is too large.Comment: 20 pages, 12 figures; v2: Corrected branching ratio for ground state
DM annihilations into leptons, leading to boost factors that are larger than
allowed. Added explicit results for doublet DM model. Some conclusions
changed; main conclusion of tension between inverse Compton constraints and
N-body simulations of halo profiles is unchange
The Ulysses Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts
We present Interplanetary Network localization information for 218 gamma-ray
bursts in the 3rd BATSE catalog, obtained by analyzing the arrival times of
these bursts at the Ulysses and Compton Gamma-Ray Observatory (CGRO)
spacecraft. For any given burst observed by these two spacecraft, arrival time
analysis (or "triangulation") results in an annulus of possible arrival
directions whose half-width varies between 7 arcseconds and 32 arcminutes,
depending on the intensity and time history of the burst, and the distance of
the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE
error circle, resulting in an average reduction of the error box area of a
factor of 30.Comment: Accepted for publication in the Astrophysical Journal Supplemen
XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos
A multi-target detection system XAX, comprising concentric 10 ton targets of
136Xe and 129/131Xe, together with a geometrically similar or larger target of
liquid Ar, is described. Each is configured as a two-phase
scintillation/ionization TPC detector, enhanced by a full 4pi array of
ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing
the conventional photomultipliers for detection of scintillation light. It is
shown that background levels in XAX can be reduced to the level required for
dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross
section, with single-event sensitivity below 10^-11 pb. The use of multiple
target elements allows for confirmation of the A^2 dependence of a coherent
cross section, and the different Xe isotopes provide information on the
spin-dependence of the dark matter interaction. The event rates observed by Xe
and Ar would modulate annually with opposite phases from each other for WIMP
mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of
background reduction allow neutrinoless double beta decay to be observed with
lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass
range 0.01-0.1 eV, the most likely range from observed neutrino mass
differences. The use of a 136Xe-depleted 129/131Xe target will also allow
measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure
From heaviness to lightness during inflation
We study the quantum fluctuations of scalar fields with a variable effective
mass during an inflationary phase. We consider the situation where the
effective mass depends on a background scalar field, which evolves during
inflation from being frozen into a damped oscillatory phase when the Hubble
parameter decreases below its mass. We find power spectra with suppressed
amplitude on large scales, similar to the standard massless spectrum on small
scales, and affected by modulations on intermediate scales. We stress the
analogies and differences with the parametric resonance in the preheating
scenario. We also discuss some potentially observable consequences when the
scalar field behaves like a curvaton.Comment: 23 pages; 8 figures; published versio
The Gamma-Ray Imaging Spectrometer (GRIS): A new balloon-borne experiment for gamma-ray line astronomy
High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments
- …