2,066 research outputs found
High-energy Emission from Pulsar Outer Magnetospheres
We investigate a stationary pair production cascade in the outer
magnetosphere of an isolated, spinning neutron star. The charge depletion due
to global flows of charged particles, causes a large electric field along the
magnetic field lines. Migratory electrons and/or positrons are accelerated by
this field to radiate gamma-rays via curvature and inverse-Compton processes.
Some of such gamma-rays collide with the X-rays to materialize as pairs in the
gap. The replenished charges partially screen the electric field, which is
self-consistently solved together with the energy distribution of particles and
gamma-rays at each point along the field lines. By solving the set of Maxwell
and Boltzmann equations, we demonstrate that an external injection of charged
particles at nearly Goldreich-Julian rate does not quench the gap but shifts
its position and that the particle energy distribution cannot be described by a
power-law. The injected particles are accelerated in the gap and escape from it
with large Lorentz factors. We show that such escaping particles migrating
outside of the gap contribute significantly to the gamma-ray luminosity for
young pulsars and that the soft gamma-ray spectrum between 100 MeV and 3 GeV
observed for the Vela pulsar can be explained by this component. We also
discuss that the luminosity of the gamma-rays emitted by the escaping particles
is naturally proportional to the square root of the spin-down luminosity.Comment: 24 pages, 11 figures; to appear in the inaugural (Sep) issue of
Progress in Astrophysics Researches (a new book series
Spherically symmetric solutions in f(R)-gravity via Noether Symmetry Approach
We search for spherically symmetric solutions of f(R) theories of gravity via
the Noether Symmetry Approach. A general formalism in the metric framework is
developed considering a point-like f(R)-Lagrangian where spherical symmetry is
required. Examples of exact solutions are given.Comment: 17 pages, to appear in Class. Quant. Gra
Discovery of Five Recycled Pulsars in a High Galactic Latitude Survey
We present five recycled pulsars discovered during a 21-cm survey of
approximately 4,150 deg^2 between 15 deg and 30 deg from the galactic plane
using the Parkes radio telescope. One new pulsar, PSR J1528-3146, has a 61 ms
spin period and a massive white dwarf companion. Like many recycled pulsars
with heavy companions, the orbital eccentricity is relatively high (~0.0002),
consistent with evolutionary models that predict less time for circularization.
The four remaining pulsars have short spin periods (3 ms < P < 6 ms); three of
these have probable white dwarf binary companions and one (PSR J2010-1323) is
isolated. PSR J1600-3053 is relatively bright for its dispersion measure of
52.3 pc cm^-3 and promises good timing precision thanks to an intrinsically
narrow feature in its pulse profile, resolvable through coherent dedispersion.
In this survey, the recycled pulsar discovery rate was one per four days of
telescope time or one per 600 deg^2 of sky. The variability of these sources
implies that there are more millisecond pulsars that might be found by
repeating this survey.Comment: 15 pages, 3 figures, accepted for publication in Ap
Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1
Background:
The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex. This large-scale expressed sequence tag (EST) analysis effort enables gene discovery and development of microsatellite markers. These ESTs will also aid in the annotation of the upcoming complete genome sequence of H. bacteriophora.
Results:
A total of 31,485 high quality ESTs were generated from cDNA libraries of the adult H. bacteriophora TTO1 strain. Cluster analysis revealed the presence of 3,051 contigs and 7,835 singletons, representing 10,886 distinct EST sequences. About 72% of the distinct EST sequences had significant matches (E value < 1e-5) to proteins in GenBank's non-redundant (nr) and Wormpep190 databases. We have identified 12 ESTs corresponding to 8 genes potentially involved in RNA interference, 22 ESTs corresponding to 14 genes potentially involved in dauer-related processes, and 51 ESTs corresponding to 27 genes potentially involved in defense and stress responses. Comparison to ESTs and proteins of free-living nematodes led to the identification of 554 parasitic nematode-specific ESTs in H. bacteriophora, among which are those encoding F-box-like/WD-repeat protein theromacin, Bax inhibitor-1-like protein, and PAZ domain containing protein. Gene Ontology terms were assigned to 6,685 of the 10,886 ESTs. A total of 168 microsatellite loci were identified with primers designable for 141 loci.
Conclusion:
A total of 10,886 distinct EST sequences were identified from adult H. bacteriophora cDNA libraries. BLAST searches revealed ESTs potentially involved in parasitism, RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis
Survival of verapamil-poisoned rats treated with triiodothyronine.
Life-threatening toxicity due to calcium channel blocker ingestion is commonly encountered by emergency medicine physicians and toxicologists. Despite a vast array of research on its treatment, results have proven inconsistent. The goal of this study is to evaluate potential vasopressor effects of triiodothyronine (T3) in rats poisoned with verapamil. Following anesthesia and intubation, ten Sprague-Dawley rats were given intravenous verapamil infusion of 10 mg/kg/h. This dose was titrated until a mean arterial pressure (MAP) of 50-55 mmHg was achieved and maintained for a period of at least 5 min. The verapamil infusion was then maintained at that rate. Five rats were randomized to receive a T3 bolus of 0.4 mcg/kg preceding an infusion of 1.5 mcg/kg/day which was doubled every 2 min until any of the following endpoints: systolic blood pressure of 100 mmHg, an elapsed time of 60 min, or death. The other five received an equal volume of normal saline solution. The primary outcome measure was survival with secondary outcomes of MAP and heart rate. The T3 group did have a slightly longer, yet not statistically significant, average time to cessation of electrical activity-30.0 +/- 14.4 min versus 23.8 +/- 9.5 min in the placebo group. Average MAP decreased nearly identically in the two groups. Heart rates were not reliable indicators of toxicity in this rat model as there was little decrease until immediately prior to death in most animals. Despite significant variability in toxicity among individual animals, no statistically significant difference in survival time, heart rate, or MAP was found between groups treated with T3 and those receiving saline
Can the Copernican principle be tested by cosmic neutrino background?
The Copernican principle, stating that we do not occupy any special place in
our universe, is usually taken for granted in modern cosmology. However recent
observational data of supernova indicate that we may live in the under-dense
center of our universe, which makes the Copernican principle challenged. It
thus becomes urgent and important to test the Copernican principle via
cosmological observations. Taking into account that unlike the cosmic photons,
the cosmic neutrinos of different energies come from the different places to us
along the different worldlines, we here propose cosmic neutrino background as a
test of the Copernican principle. It is shown that from the theoretical
perspective cosmic neutrino background can allow one to determine whether the
Copernican principle is valid or not, but to implement such an observation the
larger neutrino detectors are called for.Comment: JHEP style, 10 pages, 4 figures, version to appear in JCA
Shear dynamics in Bianchi I cosmologies with R^n-gravity
We give the equations governing the shear evolution in Bianchi spacetimes for
general f(R)-theories of gravity. We consider the case of R^n-gravity and
perform a detailed analysis of the dynamics in Bianchi I cosmologies which
exhibit local rotational symmetry. We find exact solutions and study their
behaviour and stability in terms of the values of the parameter n. In
particular, we found a set of cosmic histories in which the universe is
initially isotropic, then develops shear anisotropies which approaches a
constant value.Comment: 25 pages LaTeX, 6 figures. Revised to match the final version
accepted for publication in CQ
Kochen-Specker Theorem for Finite Precision Spin One Measurements
Unsharp spin 1 observables arise from the fact that a residual uncertainty
about the actual orientation of the measurement device remains. If the
uncertainty is below a certain level, and if the distribution of measurement
errors is covariant under rotations, a Kochen-Specker theorem for the unsharp
spin observables follows: There are finite sets of directions such that not all
the unsharp spin observables in these directions can consistently be assigned
approximate truth-values in a non-contextual way.Comment: 4 page
A two-mass expanding exact space-time solution
In order to understand how locally static configurations around
gravitationally bound bodies can be embedded in an expanding universe, we
investigate the solutions of general relativity describing a space-time whose
spatial sections have the topology of a 3-sphere with two identical masses at
the poles. We show that Israel junction conditions imply that two spherically
symmetric static regions around the masses cannot be glued together. If one is
interested in an exterior solution, this prevents the geometry around the
masses to be of the Schwarzschild type and leads to the introduction of a
cosmological constant. The study of the extension of the Kottler space-time
shows that there exists a non-static solution consisting of two static regions
surrounding the masses that match a Kantowski-Sachs expanding region on the
cosmological horizon. The comparison with a Swiss-Cheese construction is also
discussed.Comment: 15 pages, 5 figures. Replaced to match the published versio
- …