248 research outputs found

    Digital transformation of peatland eco-innovations (‘Paludiculture’): Enabling a paradigm shift towards the real-time sustainable production of ‘green-friendly’ products and services

    Get PDF
    The world is heading in the wrong direction on carbon emissions where we are not on track to limit global warming to 1.5 degrees C; Ireland is among the countries where overall emissions have continued to rise. The development of wettable peatland products and services (termed 'Paludiculture') present significant opportunities for enabling a transition away from peat-harvesting (fossil fuels) to developing 'green' eco-innovations. However, this must be balanced with sustainable carbon sequestration and environmental protection. This complex transition from 'brown to green' must be met in real time by enabling digital technologies across the full value chain. This will potentially necessitate creation of new green-business models with the potential to support disruptive innovation. This timely paper describes digital transformation of paludiculture-based eco-innovation that will potentially lead to a paradigm shift towards using smart digital technologies to address efficiency of products and services along with future-proofing for climate change. Digital transform of paludiculture also aligns with the 'Industry 5.0 -a human-centric solution'. However, companies supporting peatland innovation may lack necessary standards, data-sharing or capabilities that can also affect viable business model propositions that can jeopardize economic, political and social sustainability. Digital solutions may reduce costs, increase productivity, improve produce develop, and achieve faster time to market for paludiculture. Digitisation also enables information systems to be open, interoperable, and user-friendly. This constitutes the first study to describe the digital transformation of paludiculture, both vertically and horizontally, in order to inform sustainability that includes process automation via AI, machine learning, IoT-Cloud informed sensors and robotics, virtual and augmented reality, and blockchain for cyber-physical systems. Thus, the aim of this paper is to describe the applicability of digital transformation to actualize the benefits and opportunities of paludiculture activities and enterprises in the Irish midlands with a global orientation.info:eu-repo/semantics/publishedVersio

    Analysis of the potential of near-ground measurements of CO2 and CH4 in London, UK, for the monitoring of city-scale emissions using an atmospheric transport model

    Get PDF
    Carbon dioxide (CO2) and methane (CH4) mole fractions were measured at four near-ground sites located in and around London during the summer of 2012 with a view to investigating the potential of assimilating such measurements in an atmospheric inversion system for the monitoring of the CO2 and CH4 emissions in the London area. These data were analysed and compared with simulations using a modelling framework suited to building an inversion system: a 2 km horizontal resolution south of England configuration of the transport model CHIMERE driven by European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological forcing, coupled to a 1 km horizontal resolution emission inventory (the UK National Atmospheric Emission Inventory). First comparisons reveal that local sources, which cannot be represented in the model at a 2 km resolution, have a large impact on measurements. We evaluate methods to filter out the impact of some of the other critical sources of discrepancies between the measurements and the model simulation except that of the errors in the emission inventory, which we attempt to isolate. Such a separation of the impact of errors in the emission inventory should make it easier to identify the corrections that should be applied to the inventory. Analysis is supported by observations from meteorological sites around the city and a 3-week period of atmospheric mixing layer height estimations from lidar measurements. The difficulties of modelling the mixing layer depth and thus CO2 and CH4 concentrations during the night, morning and late afternoon lead to focusing on the afternoon period for all further analyses. The discrepancies between observations and model simulations are high for both CO2 and CH4 (i.e. their root mean square (RMS) is between 8 and 12 parts per million (ppm) for CO2 and between 30 and 55 parts per billion (ppb) for CH4 at a given site). By analysing the gradients between the urban sites and a suburban or rural reference site, we are able to decrease the impact of uncertainties in the fluxes and transport outside the London area and in the model domain boundary conditions. We are thus able to better focus attention on the signature of London urban CO2 and CH4 emissions in the atmospheric CO2 and CH4 concentrations. This considerably improves the statistical agreement between the model and observations for CO2 (with model–data RMS discrepancies that are between 3 and 7 ppm) and to a lesser degree for CH4 (with model–data RMS discrepancies that are between 29 and 38 ppb). Between one of the urban sites and either the rural or suburban reference site, selecting the gradients during periods wherein the reference site is upwind of the urban site further decreases the statistics of the discrepancies in general, though not systematically. In a further attempt to focus on the signature of the city anthropogenic emission in the mole fraction measurements, we use a theoretical ratio of gradients of carbon monoxide (CO) to gradients of CO2 from fossil fuel emissions in the London area to diagnose observation-based fossil fuel CO2 gradients, and compare them with the fossil fuel CO2 gradients simulated with CHIMERE. This estimate increases the consistency between the model and the measurements when considering only one of the two urban sites, even though the two sites are relatively close to each other within the city. While this study evaluates and highlights the merit of different approaches for increasing the consistency between the mesoscale model and the near-ground data, and while it manages to decrease the random component of the analysed model–data discrepancies to an extent that should not be prohibitive to extracting the signal from the London urban emissions, large biases, the sign of which depends on the measurement sites, remain in the final model–data discrepancies. Such biases are likely related to local emissions to which the urban near-ground sites are highly sensitive. This questions our current ability to exploit urban near-ground data for the atmospheric inversion of city emissions based on models at spatial resolution coarser than 2 km. Several measurement and modelling concepts are discussed to overcome this challenge

    Impact of Periodic Follow-Up Testing Among Urban American Indian Women With Impaired Fasting Glucose

    Get PDF
    of periodic follow-up testing among urban American Indian women with impaired fasting glucose. Prev Chronic Di

    Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update

    Get PDF
    Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections (HAIs). The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals in implementing and prioritizing their Clostridium difficile infection (CDI) prevention efforts. This document updates “Strategies to Prevent Clostridium difficile Infections in Acute Care Hospitals,” published in 2008. This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA) and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise. The list of endorsing and supporting organizations is presented in the introduction to the 2014 updates

    Multicenter study of the impact of community-onset Clostridium difficile infection on surveillance for C. difficile infection

    Get PDF
    OBJECTIVE: To evaluate the influence of community-onset/healthcare facility-associated cases on Clostridium difficile infection (CDI) incidence and outbreak detection. DESIGN: Retrospective cohort. SETTING: Five acute-care healthcare facilities in the United States. METHODS: Positive stool C. difficile toxin assays from July 2000 through June 2006 and healthcare facility exposure information were collected. CDI cases were classified as hospital-onset (HO) if they were diagnosed > 48 hours after admission or community-onset/healthcare facility-associated if they were diagnosed ≤ 48 hours from admission and had recently been discharged from the healthcare facility. Four surveillance definitions were compared: HO cases only and HO plus community-onset/healthcare facility-associated cases diagnosed within 30 (HCFA-30), 60 (HCFA-60) and 90 (HCFA-90) days after discharge from the study hospital. Monthly CDI rates were compared. Control charts were used to identify potential CDI outbreaks. RESULTS: The HCFA-30 rate was significantly higher than the HO rate at two healthcare facilities (p<0.01). The HCFA-30 rate was not significantly different from the HCFA-60 or HCFA-90 rates at any healthcare facility. The correlations between each healthcare facility’s monthly rates of HO and HCFA-30 CDI were almost perfect (range, 0.94–0.99, p<0.001). Overall, 12 time points had a CDI rate >3 SD above the mean, including 11 by the HO definition and 9 by the HCFA-30 definition, with discordant results at 4 time points (κ = 0.794, p<0.001). CONCLUSIONS: Tracking community-onset/healthcare facility-associated cases in addition to HO cases captures significantly more CDI cases but surveillance of HO CDI alone is sufficient to detect an outbreak

    Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA

    Get PDF
    This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Multiple recent publications on RNA sequencing (RNA-seq) have demonstrated the power of next-generation sequencing technologies in whole-transcriptome analysis. Vendor-specific protocols used for RNA library construction often require at least 100 ng total RNA. However, under certain conditions, much less RNA is available for library construction. In these cases, effective transcriptome profiling requires amplification of subnanogram amounts of RNA. Several commercial RNA amplification kits are available for amplification prior to library construction for next-generation sequencing, but these kits have not been comprehensively field evaluated for accuracy and performance of RNA-seq for picogram amounts of RNA. To address this, 4 types of amplification kits were tested with 3 different concentrations, from 5 ng to 50 pg, of a commercially available RNA. Kits were tested at multiple sites to assess reproducibility and ease of use. The human total reference RNA used was spiked with a control pool of RNA molecules in order to further evaluate quantitative recovery of input material. Additional control data sets were generated from libraries constructed following polyA selection or ribosomal depletion using established kits and protocols. cDNA was collected from the different sites, and libraries were synthesized at a single site using established protocols. Sequencing runs were carried out on the Illumina platform. Numerous metrics were compared among the kits and dilutions used. Overall, no single kit appeared to meet all the challenges of small input material. However, it is encouraging that excellent data can be recovered with even the 50 pg input total RNA

    A Conditional Deletion of the NR1 Subunit of the NMDA Receptor in Adult Spinal Cord Dorsal Horn Reduces NMDA Currents and Injury-Induced Pain

    Get PDF
    To determine the importance of the NMDA receptor (NMDAR) in pain hypersensitivity after injury, the NMDAR1 (NR1) subunit was selectively deleted in the lumbar spinal cord of adult mice by the localized injection of an adenoassociated virus expressing Cre recombinase into floxed NR1 mice. NR1 subunit mRNA and dendritic protein are reduced by 80% in the area of the virus injection, and NMDA currents, but not AMPA currents, are reduced 86–88% in lamina II neurons. The spatial NR1 knock-out does not alter heat or cold paw-withdrawal latencies, mechanical threshold, or motor function. However, injury-induced pain produced by intraplantar formalin is reduced by 70%. Our results demonstrate conclusively that the postsynaptic NR1 receptor subunit in the lumbar dorsal horn of the spinal cord is required for central sensitization, the central facilitation of pain transmission produced by peripheral injury

    Examination of England’s New Medicine Service (NMS) of complex health care interventions in community pharmacy

    Get PDF
    Background: Community pharmacies are increasingly commissioned to deliver new, complex health interventions in response to the growing demands on family doctors and secondary health care services. Little is known about how these complex interventions are being accommodated and translated into the community pharmacy setting and whether their aims and objectives are realized in practice. The New Medicine Service (NMS) is a complex medicine management intervention that aims to support patients’ adherence to newly prescribed medicines for a long-term condition. Objective: This study explores the recent implementation of the NMS in community pharmacies across England. It also seeks to understand how the service is becoming manifest in practice and what lessons can be learned for future service implementation. Methods: Structured, organizational ethnographic observations and in situ workplace interviews with pharmacists and support staff were undertaken within 23 English community pharmacies. Additionally, one-toone, semi-structured interviews were carried out with 47 community pharmacists and 11 general practitioners (GPs). Observational and interview data were transcribed and analysed thematically and guided by Damschroder’s consolidated framework for implementation research. Results: The NMS workload had been implemented and absorbed into pharmacists’ daily routines alongside existing responsibilities with no extra resources and little evidence of reduction in other responsibilities. Pharmacists were pragmatic, simplifying, and adapting the NMS to facilitate its delivery and using discretion to circumvent perceived non-essential paperwork. Pharmacist understanding of the NMS was found to impact on what they believed should be achieved from the service. Despite pharmacists holding positive views about the value of the NMS, not all were convinced of its perceived benefits and necessity, with reports that many consultations did not identify any problems with the patients’ medicines. GPs were generally supportive of the initiative but were unaware of the service or potential benefits. Poorly developed existing pharmacist-GP relationships impeded implementation. Conclusions: This study identifies the multifaceted and complex processes involved in implementing a new community pharmacy service in England. Community pharmacy workflow, infrastructure, and public and professional relationships all affect NMS implementation. Greater prior engagement with the pharmacy workforce and GPs, robust piloting and a phased rollout together with ongoing support and updates, are potentials strategies to ensure future implementation of pharmacy services meet their intended aims in practice
    corecore