560 research outputs found

    Partial Purification of Proteinase Inhibitors from Wounded Tomato Plants

    Full text link

    Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus11The nucleotide sequence data in A. parasiticus reported here are available in the NCBI GenBank database under the accession number AY371490.

    Get PDF
    AbstractAn 82-kb Aspergillus parasiticus genomic DNA region representing the completed sequence of the well-organized aflatoxin pathway gene cluster has been sequenced and annotated. In addition to the 19 reported and characterized aflatoxin pathway genes and the four sugar utilization genes in this cluster, we report here the identification of six newly identified genes which are putatively involved in aflatoxin formation. The function of these genes, the cluster organization and its significance in gene expression are discussed

    Evidence for an association in corn between stress tolerance and resistance to Aspergillus flavus infection and aflatoxin contamination

    Get PDF
    Aflatoxins are carcinogenic secondary metabolites produced mainly by Aspergillus flavus during infection of susceptible crops, such as corn. A. flavus infection and subsequent aflatoxin contamination is a serious issue in the southern US, especially during a drought. Field studies demonstrate that reduction of drought stress by irrigation reduces aflatoxin contamination in corn and peanut. Drought tolerant corn varieties were also found to produce significantly less aflatoxins in the field under drought conditions compared to aflatoxin-resistant controls. Genetic studies to identify QTLs for low levels of aflatoxin accumulation observed significant environmental effects on the location and number of QTLs between studies conducted at different locations and during different years. Proteomic comparisons of kernel proteins between corn genotypes resistant or susceptible to A. flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies of plants in response to biotic or abiotic stress also found that disease resistance-related genes could be upregulated by abiotic stresses and vise versa. Further examination of host plant and pathogen interactions revealed that plant responses to abiotic stresses and pathogen infections were mediated through several common regulatory genes or factors. The presence of “cross-talk” between responses to abiotic stress and biotic stress provides new approaches for enhancing host resistance to biotic stresses through the upregulation of key signal transduction factors. Key Words: Plant hormone, fungal infection, gene regulation, transcription factor. African Journal of Biotechnology Vol.3(12) 2004: 693-69

    Using biotechnology to enhance host resistance to aflatoxin contamination of corn

    Get PDF
    Host resistance is the most widely explored strategy for eliminating aflatoxin contamination by Aspergillus flavus. Breeding strategies for developing resistant corn germplasm have been enhanced by the development of new screening tools for field inoculation and for laboratory screening. RFLP analysis of corn populations has highlighted the possibility that different resistance traits can be successfully pyramided into agronomically useful germplasm, while proteomics has impacted the identification of proteins associated with resistance (RAPs). The identification of RAPs has also been enhanced by the discovery of near-isogenic corn lines in progeny generated in a West African breeding program. The characterization of genes of the aflatoxin biosynthetic pathway has provided a foundation for a genomics investigation aimed at understanding the biochemical function and genetic regulation of aflatoxin biosynthesis. Successful inhibition of aflatoxin elaboration may require not only the action of antifungal compounds, but of compounds that block biosynthesis of toxins as well. Key words: Aflatoxin contamination, corn, molecular biology, biotechnology, host resistance. African Journal of Biotechnology Vol. 2 (12), pp. 557-562, December 200

    Disease Resistance Conferred by the Expression of a Gene Encoding a Synthetic Peptide in Transgenic Cotton (Gossypium hirsutum L.) Plants

    Get PDF
    Fertile, transgenic cotton plants expressing the synthetic antimicrobial peptide, D4E1, were produced through Agrobacterium-mediated transformation. PCR products and Southern blots confirmed integration of the D4E1 gene, while RT-PCR of cotton RNA confirmed the presence of D4E1 transcripts. In vitro assays with crude leaf protein extracts from T0 and T1 plants confirmed that D4E1 was expressed at sufficient levels to inhibit the growth of Fusarium verticillioides and Verticillium dahliae compared to extracts from negative control plants transformed with pBI-d35SΩ-uidA-nos (CGUS). Although in vitro assays did not show control of pre-germinated spores of Aspergillus flavus, bioassays with cotton seeds in situ or in planta, inoculated with a GFP-expressing A. flavus, indicated that the transgenic cotton seeds inhibited extensive colonization and spread by the fungus in cotyledons and seed coats. In planta assays with the fungal pathogen,Thielaviopsis basicola, which causes black root rot in cotton, showed typical symptoms such as black discoloration and constriction on hypocotyls, reduced branching of roots in CGUS negative control T1 seedlings, while transgenic T1 seedlings showed a significant reduction in disease symptoms and increased seedling fresh weight, demonstrating tolerance to the fungal pathogen. Significant advantages of synthetic peptides in developing transgenic crop plants that are resistant to diseases and mycotoxin-causing fungal pathogens are highlighted in this report

    Development of Maize Host Resistance to Aflatoxigenic Fungi

    Get PDF
    United States Agency for International DevelopmentUnited States Department of AgriculturePeer Revie

    Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications

    Get PDF
    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs

    Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.

    Get PDF
    Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers

    Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents

    Get PDF
    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a radically new approach in the generation of hp 83Kr that can likewise be utilized for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29 % for 83Kr and P = 63 % for 129Xe. The results were reproduced over many SEOP cycles despite the laser induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin polarized 83Kr can now be purified for the first time to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 . decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin polarized 129Xe

    Neutrinoless double-beta decay and seesaw mechanism

    Full text link
    From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino mass mechanism. Within this notion, for the inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the neutrinoless double-beta decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the neutrinoless double-beta decay nuclear matrix elements are briefly discussed. We argue that if neutrinoless double-beta decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of neutrino masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures; additional reference
    corecore