51 research outputs found

    Diabetes by Air, Land, and Sea: Effect of Deployments on HbA1c and BMI

    Get PDF
    INTRODUCTION: Service members (SMs) in the United States (U.S.) Armed Forces have diabetes mellitus at a rate of 2-3%. Despite having a chronic medical condition, they have deployed to environments with limited medical support. Given the scarcity of data describing how they fare in these settings, we conducted a retrospective study analyzing the changes in glycated hemoglobin (HbA1c) and body mass index (BMI) before and after deployment. MATERIALS AND METHODS: SMs from the U.S. Army, Air Force, Navy, and Marine Corps with diabetes who deployed overseas were identified through the Military Health System (MHS) Management Analysis and Reporting Tool and the Defense Manpower Data Center. Laboratory and pharmaceutical data were obtained from the MHS Composite Health Care System and the Pharmacy Data Transaction Service, respectively. Paired t-tests were conducted to calculate changes in HbA1c and BMI before and after deployment. RESULTS: SMs with diabetes completed 11,325 deployments of greater than 90 days from 2005 to 2017. Of these, 474 (4.2%) SMs had both HbA1c and BMI measurements within 90 days prior to departure and within 90 days of return. Most (84.2%) required diabetes medications: metformin in 67.3%, sulfonylureas in 19.0%, dipeptidyl peptidase-4 inhibitors in 13.9%, and insulin in 5.5%. Most SMs deployed with an HbA1c \u3c 7.0% (67.1%), with a mean predeployment HbA1c of 6.8%. Twenty percent deployed with an HbA1c between 7.0 and 7.9%, 7.2% deployed with an HbA1c between 8.0 and 8.9%, and 5.7% deployed with an HbA1c of 9.0% or higher. In the overall population and within each military service, there was no significant change in HbA1c before and after deployment. However, those with predeployment HbA1c \u3c 7.0% experienced a rise in HbA1c from 6.2 to 6.5% (P \u3c 0.001), whereas those with predeployment HbA1c values ≥7.0% experienced a decline from 8.0 to 7.5% (P \u3c 0.001). Those who deployed between 91 and 135 days had a decline in HbA1c from 7.1 to 6.7% (P = 0.010), but no significant changes were demonstrated in those with longer deployment durations. BMI declined from 29.6 to 29.3 kg/m2 (P \u3c 0.001), with other significant changes seen among those in the Army, Navy, and deployment durations up to 315 days. CONCLUSIONS: Most SMs had an HbA1c \u3c 7.0%, suggesting that military providers appropriately selected well-managed SMs for deployment. HbA1c did not seem to deteriorate during deployment, but they also did not improve despite a reduction in BMI. Concerning trends included the deployment of some SMs with much higher HbA1c, utilization of medications with adverse safety profiles, and the lack of HbA1c and BMI evaluation proximal to deployment departures and returns. However, for SMs meeting adequate glycemic targets, we demonstrated that HbA1c remained stable, supporting the notion that some SMs may safely deploy with diabetes. Improvement in BMI may compensate for factors promoting hyperglycemia in a deployed setting, such as changes in diet and medication availability. Future research should analyze in a prospective fashion, where a more complete array of diabetes and readiness-related measures to comprehensively evaluate the safety of deploying SMs with diabetes

    Glycemic Benefits with Adherence to testosterone therapy in men with hypogonadism and type 2 diabetes mellitus.

    Get PDF
    BACKGROUND: While previous studies have demonstrated testosterone\u27s beneficial effects on glycemic control in men with hypogonadism and Type 2 Diabetes, the extent to which these improvements are observed based on the degree of treatment adherence has been unclear. OBJECTIVES: To evaluate the effects of long-term testosterone therapy in A1C levels in men with Type 2 Diabetes Mellitus and hypogonadism, controlling for BMI, pre-treatment A1C, and age among different testosterone therapy adherence groups. MATERIALS AND METHODS: We performed a retrospective analysis of 1737 men with diabetes and hypogonadism on testosterone therapy for 5 years of data from 2008-2018, isolating A1C, lipid panels, and BMI results for analysis. Subjects were categorized into adherence groups based on quartiles of the proportion of days covered (\u3e 75% of days, 51-75% of days, 26-50% of days and 0-25% of days), with \u3e75% of days covered considered adherent to therapy. RESULTS: Pre-treatment median A1C was 6.8%. Post-treatment median A1C was 7.1%. The adherent group, \u3e75%, was the only group notable for a decrease in A1C, with a median decrease of -0.2 (p = 0.0022). BMI improvement was associated with improved post-treatment A1C (p = 0.007). When controlling for BMI, age, and pre-treatment A1C, the \u3e75% adherence group was associated with improved post-treatment A1C (p \u3c 0.001). DISCUSSION: When controlling for all studied variables, testosterone adherence was associated with improved post-treatment A1C. The higher the initial A1C at the initiation of therapy, the higher the potential for lowering the patient\u27s A1C with \u3e75% adherence. Further, all groups showed some reduction in BMI, which may indicate that testosterone therapy may affect A1C independent of weight loss. CONCLUSION: Even when controlling for improved BMI, pre-treatment A1C, and age, testosterone positively impacted glycemic control in diabetes patients with hypogonadism, with the most benefit noted in those most adherent to therapy (\u3e75%)

    Impact of Structured Insulin Order Sets on Inpatient Hypoglycemia and Glycemic Control

    Get PDF
    Objective: In hospitalized patients, glycemic excursions outside recommended glycemic targets have been associated with increased morbidity and mortality. Despite recommendations to avoid use of correctional insulin alone for managing hyperglycemia, this approach remains common. We performed a quality improvement project aimed at both reducing hypoglycemic events and promoting increased use of basal insulin by updating our insulin order sets to reflect clinical practice guideline recommendations. Methods: Brooke Army Medical Center correctional insulin order sets were modified to reflect higher treatment thresholds and targets, and a basal insulin order was added with a recommended weight-based starting dose. Pre- and postintervention analyses were performed. Patients were included if they were prescribed subcutaneous insulin during their hospital stay. The following outcomes were measured: (1) glucose levels, and (2) prescriptions for basal insulin. Results: A significant reduction in hypoglycemia events was noted following the intervention (glucose \u3c70 mg/dL: 9.2% pre-intervention vs. 8.8% postintervention; glucose \u3c55 mg/dL: 4.2% pre-intervention vs. 2.2% postintervention). When excluding patients that were ordered correctional insulin alone but did not receive a dose, an increase in basal insulin use was seen (50% pre-intervention vs. 61% postintervention). Rates and severity of hyperglycemia (glucose \u3e180 mg/dL) remained unchanged. Conclusion: The alteration in insulin order set parameters resulted in a significant reduction in hypoglycemia without significant increases in hyperglycemia. Although basal insulin use increased, optimal dosing recommendations were not often utilized. Further interventions are necessary to reduce hyperglycemia. Abbreviations: CPOE = computerized provider order entry; EMR = electronic medical record; HbA1c = hemoglobin A1c; LOS = length of stay; QI = quality improvement; SSI = sliding scale insulin

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Phase stochastic resonance in a forced nano-electromechanical membrane

    No full text
    International audienceStochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude modulated, bistable systems. We show experimentally the emergence of phase stochastic resonance in the bidimensional response of a forced nanoelectromechanical membrane by evidencing the enhancement of a weak phase modulated signal thanks to the addition of phase noise. Based on a general forced Duffing oscillator model, we demonstrate experimentally and theoretically that phase noise acts multiplicatively, inducing important physical consequences. These results may open interesting prospects for phase noise metrology or coherent signal transmission applications in nanomechanical oscillators. Moreover, our approach, due to its general character, may apply to various systems

    Weak signal enhancement by non-linear resonance control in a forced nano-electromechanical resonator

    No full text
    Driven non-linear resonators can display sharp resonances or even multistable behaviours amenable to induce strong enhancements of weak signals. Such enhancements can make use of the phenomenon of vibrational resonance whereby a weak low-frequency signal applied to a bistable resonator can be amplified by driving the non-linear oscillator with another appropriately-adjusted non-resonant high-frequency field. Here we demonstrate the resonant enhancement of a weak signal by use of a vibrational force yet in a monostable system consisting of a driven nano-electromechanical nonlinear resonator. The oscillator is subjected to a strong quasi-resonant drive and to two additional tones: a weak signal at lower frequency and a non-resonant driving at an intermediate frequency. We show experimentally and theoretically a significant enhancement of the weak signal thanks to the occurence of vibrational resonance enabled by the presence of the intermediate frequency driving. We analyse this phenomenon in terms of coherent nonlinear resonance manipulation. Our results illustrate a general mechanism which may have applications in the fields of radio-frequency signal processing or sensing for instance
    corecore