3,916 research outputs found
Classical Tensors and Quantum Entanglement II: Mixed States
Invariant operator-valued tensor fields on Lie groups are considered. These
define classical tensor fields on Lie groups by evaluating them on a quantum
state. This particular construction, applied on the local unitary group
U(n)xU(n), may establish a method for the identification of entanglement
monotone candidates by deriving invariant functions from tensors being by
construction invariant under local unitary transformations. In particular, for
n=2, we recover the purity and a concurrence related function (Wootters 1998)
as a sum of inner products of symmetric and anti-symmetric parts of the
considered tensor fields. Moreover, we identify a distinguished entanglement
monotone candidate by using a non-linear realization of the Lie algebra of
SU(2)xSU(2). The functional dependence between the latter quantity and the
concurrence is illustrated for a subclass of mixed states parametrized by two
variables.Comment: 23 pages, 4 figure
Towards a definition of quantum integrability
We briefly review the most relevant aspects of complete integrability for
classical systems and identify those aspects which should be present in a
definition of quantum integrability.
We show that a naive extension of classical concepts to the quantum framework
would not work because all infinite dimensional Hilbert spaces are unitarily
isomorphic and, as a consequence, it would not be easy to define degrees of
freedom. We argue that a geometrical formulation of quantum mechanics might
provide a way out.Comment: 37 pages, AmsLatex, 1 figur
Optimization of an ih-cavity based high energy heavy-ion LINAC at GSI
A new high energy heavy-ion injector (HE-Linac) for the FAIR project was proposedas replacement for the existing post-stripper linac at the GSI UNILAC. Six 108 MHz IH-type drift-tube linac cavities within a total length of about 24m accelerate the ions (up to U28+) from1.4 MeV/u up to 11.4 MeV/u. Fast pulsed quadrupole triplet lenses are used for transverse focusing in between the IH cavities. The optimization of the HE linac with respect to the emittance growth reductionis investigated
Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds
How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) distance between successive footfalls—was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk–run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history
Axisymmetric equilibria of a gravitating plasma with incompressible flows
It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric
gravitating magnetically confined plasma with incompressible flows is governed
by a second-order elliptic differential equation for the poloidal magnetic flux
function containing five flux functions coupled with a Poisson equation for the
gravitation potential, and an algebraic relation for the pressure. This set of
equations is amenable to analytic solutions. As an application, the
magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma
currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev.
Lett. {\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal
currents, subject to gravitating forces from a massive body (a star or black
hole) and inertial forces due to incompressible sheared flows. Explicit
solutions are obtained in two regimes: (a) in the low-energy regime
, where
, , , and are related to the thermal,
poloidal-current, flow and gravitating energies normalized to the
poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime
. It turns out
that in the high-energy regime all four forces, pressure-gradient,
toroidal-magnetic-field, inertial, and gravitating contribute equally to the
formation of magnetic surfaces very extended and localized about the symmetry
plane such that the resulting equilibria resemble the accretion disks in
astrophysics.Comment: 12 pages, latex, to be published in Geophys. Astrophys. Fluid
Dynamic
- …