82 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Leveraging Traceability to Integrate Safety Analysis Artifacts into the Software Development Process

    Full text link
    Safety-critical system's failure or malfunction can cause loss of human lives or damage to the physical environment; therefore, continuous safety assessment is crucial for such systems. In many domains this includes the use of Safety assurance cases (SACs) as a structured argument that the system is safe for use. SACs can be challenging to maintain during system evolution due to the disconnect between the safety analysis and system development process. Further, safety analysts often lack domain knowledge and tool support to evaluate the SAC. We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models, and then uses these connections to visualize the change. We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety. We present new traceability techniques for closer integration of the safety analysis and system development process, and illustrate the viability of our approach using examples from a cyber-physical system that deploys Unmanned Aerial Vehicles for emergency response

    A Framework for Evaluating Traceability Benchmark Metrics

    Get PDF
    Many software traceability techniques have been developed in the past decade, but suffer from inaccuracy. To address this shortcoming, the software traceability research community seeks to employ benchmarking. Benchmarking will help the community agree on whether improvements to traceability techniques have addressed the challenges faced by the research community. A plethora of evaluation methods have been applied, with no consensus on what should be part of a community benchmark. The goals of this paper are: to identify recurring problems in evaluation of traceability techniques, to identify essential properties that evaluation methods should possess to overcome the identified problems, and to provide guidelines for benchmarking software traceability techniques. We illustrate the properties and guidelines using empirical evaluation of three software traceability techniques on nine data sets. The proposed benchmarking framework can be broadly applied to domains beyond traceability research

    Leveraging Transformer-based Language Models to Automate Requirements Satisfaction Assessment

    Full text link
    Requirements Satisfaction Assessment (RSA) evaluates whether the set of design elements linked to a single requirement provide sufficient coverage of that requirement -- typically meaning that all concepts in the requirement are addressed by at least one of the design elements. RSA is an important software engineering activity for systems with any form of hierarchical decomposition -- especially safety or mission critical ones. In previous studies, researchers used basic Information Retrieval (IR) models to decompose requirements and design elements into chunks, and then evaluated the extent to which chunks of design elements covered all chunks in the requirement. However, results had low accuracy because many critical concepts that extend across the entirety of the sentence were not well represented when the sentence was parsed into independent chunks. In this paper we leverage recent advances in natural language processing to deliver significantly more accurate results. We propose two major architectures: Satisfaction BERT (Sat-BERT), and Dual-Satisfaction BERT (DSat-BERT), along with their multitask learning variants to improve satisfaction assessments. We perform RSA on five different datasets and compare results from our variants against the chunk-based legacy approach. All BERT-based models significantly outperformed the legacy baseline, and Sat-BERT delivered the best results returning an average improvement of 124.75% in Mean Average Precision

    Semantically Enhanced Software Traceability Using Deep Learning Techniques

    Full text link
    In most safety-critical domains the need for traceability is prescribed by certifying bodies. Trace links are generally created among requirements, design, source code, test cases and other artifacts, however, creating such links manually is time consuming and error prone. Automated solutions use information retrieval and machine learning techniques to generate trace links, however, current techniques fail to understand semantics of the software artifacts or to integrate domain knowledge into the tracing process and therefore tend to deliver imprecise and inaccurate results. In this paper, we present a solution that uses deep learning to incorporate requirements artifact semantics and domain knowledge into the tracing solution. We propose a tracing network architecture that utilizes Word Embedding and Recurrent Neural Network (RNN) models to generate trace links. Word embedding learns word vectors that represent knowledge of the domain corpus and RNN uses these word vectors to learn the sentence semantics of requirements artifacts. We trained 360 different configurations of the tracing network using existing trace links in the Positive Train Control domain and identified the Bidirectional Gated Recurrent Unit (BI-GRU) as the best model for the tracing task. BI-GRU significantly out-performed state-of-the-art tracing methods including the Vector Space Model and Latent Semantic Indexing.Comment: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE
    • …
    corecore