378 research outputs found
Heterotic Line Bundle Standard Models
In a previous publication, arXiv:1106.4804, we have found 200 models from
heterotic Calabi-Yau compactifications with line bundles, which lead to
standard models after taking appropriate quotients by a discrete symmetry and
introducing Wilson lines. In this paper, we construct the resulting standard
models explicitly, compute their spectrum including Higgs multiplets, and
analyze some of their basic properties. After removing redundancies we find
about 400 downstairs models, each with the precise matter spectrum of the
supersymmetric standard model, with one, two or three pairs of Higgs doublets
and no exotics of any kind. In addition to the standard model gauge group, up
to four Green-Schwarz anomalous U(1) symmetries are present in these models,
which constrain the allowed operators in the four-dimensional effective
supergravity. The vector bosons associated to these anomalous U(1) symmetries
are massive. We explicitly compute the spectrum of allowed operators for each
model and present the results, together with the defining data of the models,
in a database of standard models accessible at
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/linebundlemodels/index.html.
Based on these results we analyze elementary phenomenological properties. For
example, for about 200 models all dimension four and five proton decay
violating operators are forbidden by the additional U(1) symmetries.Comment: 55 pages, Latex, 3 pdf figure
UVSSA and USP7, a new couple in transcription-coupled DNA repair
Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS
Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B
BACKGROUND: The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS: We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS: The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION: These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied
Erythropoietin overrides the triggering effect of DNA platination products in a mouse model of Cisplatin-induced neuropathy
<p>Abstract</p> <p>Background</p> <p>Cisplatin mediates its antineoplastic activity by formation of distinct DNA intrastrand cross links. The clinical efficacy and desirable dose escalations of cisplatin are restricted by the accumulation of DNA lesions in dorsal root ganglion (DRG) cells leading to sensory polyneuropathy (PNP). We investigated in a mouse model by which mechanism recombinant erythropoietin (rhEPO) protects the peripheral nervous system from structural and functional damage caused by cisplatin treatment with special emphasis on DNA damage burden.</p> <p>Results</p> <p>A cumulative dose of 16 mg cisplatin/kg resulted in clear electrophysiological signs of neuropathy, which were significantly attenuated by concomitant erythropoietin (cisplatin 32,48 m/s Β± 1,68 m/s; cisplatin + rhEPO 49,66 m/s Β± 1,26 m/s; control 55,01 m/s Β± 1,88 m/s; p < 0,001). The co-application of rhEPO, however, did not alter the level of unrepaired cisplatin-DNA lesions accumulating in DRG target cells. Micro-morphological analyses of the sciatic nerve from cisplatin-exposed mice showed damaged myelin sheaths and mitochondria. Co-administered rhEPO inhibited myelin sheaths from structural injuries and resulted in an increased number of intact mitochondria.</p> <p>Conclusion</p> <p>The protective effect of recombinant erythropoietin is not mediated by reducing the burden of DNA platination in the target cells, but it is likely to be due to a higher resistance of the target cells to the adverse effect of DNA damage. The increased frequency of intact mitochondria might also contribute to this protective role.</p
Association between XPF Polymorphisms and Cancer Risk: A Meta-Analysis
Background: Xeroderma pigmentosum complementation group F (XPF or ERCC4) plays a key role in DNA repair that protects against genetic instability and carcinogenesis. A series of epidemiological studies have examined associations between XPF polymorphisms and cancer risk, but the findings remain inconclusive. Methodology/Principal Findings: In this meta-analysis of 47,639 cancer cases and 51,915 controls, by searching three electronic databases (i.e., MEDLINE, EMBASE and CNKI), we summarized 43 case-control studies from 29 publications on four commonly studied polymorphisms of XPF (i.e., rs1800067, rs1799801, rs2020955 and rs744154), and we did not find statistical evidence of any significant association with overall cancer risk. However, in stratification analyses, we found a significant association of XPF-rs1799801 with a reduced cancer risk in Caucasian populations (4,845 cases and 5,556 controls; recessive model: OR = 0.87, 95% CI = 0.76β1.00, P = 0.049, P = 0.723 for heterogeneity test, I2 = 0). Further genotype-phenotype correlation analysis showed that the homozygous variant CC genotype carriers had higher XPF expression levels than that of the TT genotype carriers (Studentβs t test for a recessive model: P = 0.046). No publication bias was found by using the funnel plot and Eggerβs test. Conclusion: This meta-analysis suggests a lack of statistical evidence for the association between the four XPF SNPs and overall risk of cancers. However, XPF-rs1799801 may be associated with cancer risk in Caucasian populations, which needs to be further validated in single large, well-designed prospective studies
- β¦