36 research outputs found
General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species
<p>Abstract</p> <p>Background</p> <p>Downy mildew is a destructive grapevine disease caused by <it>Plasmopara viticola </it>(Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (<it>Vitis</it>) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood.</p> <p>Results</p> <p>Early transcriptional changes associated with <it>P. viticola </it>infection in susceptible <it>V. vinifera </it>and resistant <it>V. riparia </it>plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in <it>V. riparia</it>, as determined by microscopic analysis. Our data indicate that resistance in <it>V. riparia </it>is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in <it>V. vinifera</it>. More interestingly, resistance in <it>V. riparia </it>also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in <it>V. vinifera </it>represents a weak attempted defense response rather than the activation of compatibility-specific pathways.</p> <p>Conclusions</p> <p>Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in <it>V. riparia </it>resistance to <it>P. viticola</it>.</p
Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study
BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348
Canine distemper virus detection by different methods of One-Step RT-qPCR
ABSTRACT: Three commercial kits of One-Step RT-qPCR were evaluated for the molecular diagnosis of Canine Distemper Virus. Using the kit that showed better performance, two systems of Real-time RT-PCR (RT-qPCR) assays were tested and compared for analytical sensitivity to Canine Distemper Virus RNA detection: a One-Step RT-qPCR (system A) and a One-Step RT-qPCR combined with NESTED-qPCR (system B). Limits of detection for both systems were determined using a serial dilution of Canine Distemper Virus synthetic RNA or a positive urine sample. In addition, the same urine sample was tested using samples with prior centrifugation or ultracentrifugation. Commercial kits of One-Step RT-qPCR assays detected canine distemper virus RNA in 10 (100%) urine samples from symptomatic animals tested. The One-Step RT-qPCR kit that showed better results was used to evaluate the analytical sensitivity of the A and B systems. Limit of detection using synthetic RNA for the system A was 11 RNA copies µL-1 and 110 RNA copies µl-1 for first round System B. The second round of the NESTED-qPCR for System B had a limit of detection of 11 copies µl-1. Relationship between Ct values and RNA concentration was linear. The RNA extracted from the urine dilutions was detected in dilutions of 10-3 and10-2 by System A and B respectively. Urine centrifugation increased the analytical sensitivity of the test and proved to be useful for routine diagnostics. The One-Step RT-qPCR is a fast, sensitive and specific method for canine distemper routine diagnosis and research projects that require sensitive and quantitative methodology
Among Developmental Regulators, StuA but Not BrlA Is Essential for Penicillin V Production in Penicillium chrysogenum▿ †
In filamentous fungi, secondary metabolism is often linked with developmental processes such as conidiation. In this study we analyzed the link between secondary metabolism and conidiation in the main industrial producer of the β-lactam antibiotic penicillin, the ascomycete Penicillium chrysogenum. Therefore, we generated mutants defective in two central regulators of conidiation, the transcription factors BrlA and StuA. Inactivation of either brlA or stuA blocked conidiation and altered hyphal morphology during growth on solid media, as shown by light and scanning electron microscopy, but did not affect biomass production during liquid-submerged growth. Genome-wide transcriptional profiling identified a complex StuA- and BrlA-dependent regulatory network, including genes previously shown to be involved in development and secondary metabolism. Remarkably, inactivation of stuA, but not brlA, drastically downregulated expression of the penicillin biosynthetic gene cluster during solid and liquid-submerged growth. In agreement, penicillin V production was wild-type-like in brlA-deficient strains but 99% decreased in stuA-deficient strains during liquid-submerged growth, as shown by high-performance liquid chromatography (HPLC) analysis. Thus, among identified regulators of penicillin V production StuA has the most severe influence. Overexpression of stuA increased the transcript levels of brlA and abaA (another developmental regulator) and derepressed conidiation during liquid-submerged growth but did not affect penicillin V productivity. Taken together, these data demonstrate an intimate but not exclusive link between regulation of development and secondary metabolism in P. chrysogenum
Biogas Production with Residuals Deriving from Olive Mill Wastewater and Olive Pomace Wastes: Quantification of Produced Energy, Spent Energy, and Process Efficiency
At present, taking into account the sustainability of the starting matrices, the biogas production industry is continuously growing, especially in consideration of ecological transition and circularity. The present study deals with the development of anaerobic bioreactors aimed at valorizing two specific wastes of the olive oil supply chain, i.e., the residual of protein hydrolysis process of three-phases olive pomace (OP-PH) and that recovered after the extraction of bioactive molecules from olive mill wastewater (OMWW waste). The energy consumed for biogas production varied from 0.52 kJ (OP and OMWW waste) to 0.97 kJ (OP-PH), while the energy produced for OP, OP-PH and OMMW waste was equal to 1.73, 2.94 and 1.60 kJ, respectively. The optimal production period was defined by considering only the range showing energy production higher than its consumption. According to this, OMWW showed the best performances, since it required 9 days (instead of 12 of untreated and treated OP) to reach the completion. The biogas production efficiency of the three-phase OP-PH waste calculated in the optimal production period, i.e., 12 days, was higher than the other samples, with a yield of 76.7% and a quantity of energy potentially producible corresponding to 1727.8 kJ/kg of volatile solids. These results pave the way for possible applications of this procedure for the planning of a multi-purpose biorefinery fed with by-products from the olive supply chain waste, thus promoting the use of sustainable waste materials from a circular economy perspective
The Grapevine E3 Ubiquitin Ligase VriATL156 Confers Resistance against the Downy Mildew Pathogen Plasmopara viticola
Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew
Associação genética entre ocorrência de mastite clínica e produção de leite em vacas Holandesas
RESUMO: O objetivo deste trabalho foi estimar os parâmetros genéticos e fenotípicos para ocorrência da mastite clínica (MC) e para a produção de leite acumulada até 305 dias (PR305) e estudar as associações genéticas entre elas, usando informações de 11.738 lactações de 5.084 vacas de um rebanho da raça Holandesa, paridas entre 1995 a 2010. Os componentes de covariância foram obtidos por abordagem Bayesiana, sob modelo animal. As estimativas de herdabilidade para a PR305 e para a MC foram de 0,16 (0,02) e 0,11 (0,02), respectivamente, e as repetibilidades foram 0,34 (0,012) e 0,21 (0,02), para PR305 e MC, respectivamente. A correlação genética entre a PR305 e a MC foi negativa e de baixa magnitude (-0,21±0,13). As estimativas de herdabilidade para PR305 e MC indicam que estas características são influenciadas por fatores ambientais, entretanto há suficiente variabilidade genética para obtenção de ganhos através da seleção