370 research outputs found

    Sequence-specific interactions of drugs interfering with the topoisomerase–DNA cleavage complex

    Get PDF
    AbstractDNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top–DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top–DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug–DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells

    Metal ion and inter-domain interactions as functional networks in E. coli topoisomerase I

    Get PDF
    Escherichia coli topoisomerase I (EcTopoI) is a type IA bacterial topoisomerase which is receiving large attention due to its potential application as novel target for antibacterial therapeutics. Nevertheless, a detailed knowledge of its mechanism of action at molecular level is to some extent lacking. This is partly due to the requirement of several factors (metal ions, nucleic acid) to the proper progress of the enzyme catalytic cycle. Additionally, each of them can differently affect the protein structure. Here we assess the role of the different components (DNA, metal ions, protein domains) in a dynamic environment as in solution by monitoring the catalytic as well as the structural properties of EcTopoI. Our results clearly indicated the interaction among these components as functionally relevant and underlined their mutual involvement. Some similarities with other enzymes of the same family emerged (for example DNA prevents divalent metal ions coordination at non selective binding sites). Interestingly, same interactions (C- and N-terminal domain interaction) appear to be peculiar of this bacterial topoisomerase which suggest they could be favorably exploited to the design of selective inhibitors for this class of enzyme

    The Management of Psychomotor Agitation Associated with Schizophrenia or Bipolar Disorder. A Brief Review

    Get PDF
    The early and correct assessment of psychomotor agitation (PMA) is essential to ensure prompt intervention by healthcare professionals to improve the patient's condition, protect healthcare staff, and facilitate future management. Proper training for recognizing and managing agitation in all care settings is desirable to improve patient outcomes. The best approach is one that is ethical, non-invasive, and respectful of the patient's dignity. When deemed necessary, pharmacological interventions must be administered rapidly and avoid producing an excessive state of sedation, except in cases of severe and imminent danger to the patient or others. The purpose of this brief review is to raise awareness about best practices for the management of PMA in emergency care situations and consider the role of new pharmacological interventions in patients with agitation associated with bipolar disorder or schizophrenia

    The Management of Psychomotor Agitation Associated with Schizophrenia or Bipolar Disorder: A Brief Review

    Get PDF
    The early and correct assessment of psychomotor agitation (PMA) is essential to ensure prompt intervention by healthcare professionals to improve the patient’s condition, protect healthcare staff, and facilitate future management. Proper training for recognizing and managing agitation in all care settings is desirable to improve patient outcomes. The best approach is one that is ethical, non-invasive, and respectful of the patient’s dignity. When deemed necessary, pharmacological interventions must be administered rapidly and avoid producing an excessive state of sedation, except in cases of severe and imminent danger to the patient or others. The purpose of this brief review is to raise awareness about best practices for the management of PMA in emergency care situations and consider the role of new pharmacological interventions in patients with agitation associated with bipolar disorder or schizophrenia

    Internalization of the constitutively active arginine 1152-->glutamine insulin receptor occurs independently of insulin at an accelerated rate.

    Get PDF
    Signals controlling the insulin receptor endocytotic pathway have been investigated using the R1152Q insulin receptor mutant (M). This mutant receptor exhibits high levels of insulin-independent kinase activity, impaired autophosphorylation, and lack of an insulin stimulatory effect on both auto- and substrate phosphorylation. NIH-3T3 fibroblasts expressing M receptors displayed a 2.5-fold higher 125I-insulin internalization rate than wild type (WT) but lacked insulin-induced receptor internalization and down-regulation. Cell surface recycling of internalized receptors also occurred at a higher rate in M cells and was unaffected by insulin. Cell preincubation with 35 mM Tris, which inhibits the insulin receptor degradative route, elicited no effect on M receptor recycling but inhibited that of WT by 40%. In contrast, the energy depleter 2,4-dinitrophenol, which inhibits normal insulin receptor retroendocytosis, impaired M receptor recycling 4-fold more effectively than that of WT. The release of internalized intact 125I-insulin was 6-fold greater in M than in WT fibroblasts and was almost completely inhibited by dinitrophenol, whereas insulin degradation by M cells was 4-fold decreased as compared with WT. Thus, internalization and recycling of the constitutively active Gln1152 receptor kinase occur in the absence of autophosphorylation. However, tyrosine phosphorylation appears to be required for proper sorting of endocytosed insulin receptors

    Mapping Drug Interactions at the Covalent Topoisomerase II-DNA Complex by Bisantrene/Amsacrine Congeners *

    Get PDF
    To identify structural determinants for the sequence-specific recognition of covalent topoisomerase II-DNA complexes by anti-cancer drugs, we investigated a number of bisantrene congeners, including a 10-azabioisoster, bearing one or two 4, 5-dihydro-1H-imidazol-2-yl hydrazone side chains at positions 1, 4, or 9 of the anthracene ring system. The studied bisantrene/amsacrine (m-AMSA) hybrid and bisantrene isomers were able to poison DNA topoisomerase II with an intermediate activity between those of bisantrene and m-AMSA. Moving the side chain from the central to a lateral ring (from C-9 to C-1/C-4) only slightly modified the drug DNA affinity, whereas it dramatically affected local base preferences of poison-stimulated DNA cleavage. In contrast, switching the planar aromatic systems of bisantrene and m-AMSA did not substantially alter the sequence specificity of drug action. A computer-assisted steric and electrostatic alignment analysis of the test compounds was in agreement with the experimental data, since a common pharmacophore was shared by bisantrene, m-AMSA, and 9-substituted analogs, whereas the 1-substituted isomer showed a radically changed pharmacophoric structure. Thus, the relative space occupancy and electron distribution of putative DNA binding (aromatic rings) and enzyme binding (side chains) moieties are fundamental in directing the specific action of topoisomerase II poisons and in determining the poison pharmacophore

    Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex

    Get PDF
    Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and β-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs
    • …
    corecore