16 research outputs found
G2A Signaling Dampens Colitic Inflammation via Production of IFN-Îł
Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the
G protein–coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion
of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A2/2
mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening,
histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A2/2 colons
showed significantly more TNF-a+ and Ly6ChiMHCII2 proinflammatory monocytes and eosinophils than in wild-type colons.
Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A2/2 mice. G2A2/2
mice also had less IFN-g in inflamed colon tissues than wild-type mice. Fewer CD4+ lymphocytes were recruited to inflamed
G2A2/2 colons, and fewer colonic lymphocytes produced IFN-g upon ex vivo stimulation. Administration of IFN-g to G2A2/2
mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil
numbers to levels seen in wild-type mice. Furthermore, IFN-g reduced the numbers of TNF-a+ monocyte and enhanced their
maturation from Ly6ChiMHCII2 to Ly6CintMHCII+
. Taken together, the data suggest that G2A signaling serves to dampen
intestinal inflammation via the production of IFN-g, which, in turn, enhances monocyte maturation to a less inflammatory
program and ultimately reduces eosinophil-induced injury of colonic tissues
Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations
Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV\ue2\u80\u93neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes