10 research outputs found

    Dynamical properties of clean and H-covered W(110) surfaces

    Get PDF
    In recent years, the availability of high-resolution surface-sensitive experimental techniques such as Helium atom scattering (HAS) and electron energy loss spectroscopy (EELS) has opened new perspectives in the study of the dynamical properties of solid surfaces. In particular, a great deal of experimental data are now available on the phonon dispersions of surfaces of insulator, semiconductors, and metals [1]. Among transition metals, the vibrational properties of the hydrogenated W(llO) surface have attracted much attention because they display unusual and unexpected features which are still poorly understood [2-6]. When a full monolayer of hydrogen is adsorbed, the surface phonon spectrum undergoes a dramatic change and an anomalous behavior appears

    Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO3_3 (001) surface

    Full text link
    The c(2×\times2) reconstruction of (001) PbTiO3_3 surfaces is studied by means of first principles calculations for paraelectric (non-polar) and ferroelectric ([001] polarized) films. Analysis of the atomic displacements in the near-surface region shows how the surface modifies the antiferrodistortive (AFD) instability and its interaction with ferroelectric (FE) distortions. The effect of the surface is found to be termination dependent. The AFD instability is suppressed at the TiO2_2 termination while it is strongly enhanced, relative to the bulk, at the PbO termination resulting in a c(2x2) surface reconstruction which is in excellent agreement with experiments. We find that, in contrast to bulk PbTiO3_3, in-plane ferroelectricity at the PbO termination does not suppress the AFD instability. The AFD and the in-plane FE distortions are instead concurrently enhanced at the PbO termination. This leads to a novel surface phase with coexisting FE and AFD distortions which is not found in PbTiO3_3 bulk

    Ab initio study of the phase diagram of epitaxial BaTiO3

    Full text link
    Using a combination of first-principles and effective-Hamiltonian approaches, we map out the structure of BaTiO3 under epitaxial constraints applicable to growth on perovskite substrates. We obtain a phase diagram in temperature and misfit strain that is qualitatively different from that reported by Pertsev et al. [Phys. Rev. Lett. 80, 1988 (1998)], who based their results on an empirical thermodynamic potential with parameters fitted at temperatures in the vicinity of the bulk phase transitions. In particular, we find a region of `r phase' at low temperature where Pertsev et al. have reported an `ac phase'. We expect our results to be relevant to thin epitaxial films of BaTiO3 at low temperatures and experimentally-achievable strains.Comment: 4 pages, with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/od_epi/index.htm

    Epitaxially strained [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and PbTiO3_3 from first principles

    Full text link
    The effect of layer-by-layer heterostructuring and epitaxial strain on lattice instabilities and related ferroelectric properties is investigated from first principles for the [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and pure PbTiO3_3 on a cubic substrate. The results for the superlattice show an enhancement of the stability of the monoclinic r-phase with respect to pure PbTiO3_3. Analysis of the lattice instabilities of the relaxed centrosymmetric reference structure computed within density functional perturbation theory suggests that this results from the presence of two unstable zone-center modes, one confined in the PbTiO3_3 layer and one in the PbZrO3_3 layer, which produce in-plane and normal components of the polarization, respectively. The zero-temperature dielectric response is computed and shown to be enhanced not only near the phase boundaries, but throughout the r-phase. Analysis of the analogous calculation for pure PbTiO3_3 is consistent with this interpretation, and suggests useful approaches to engineering the dielectric properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure

    Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles

    Full text link
    Ab initio phonon calculations for the nonpolar reference structures of the (001), (110), and (111) PbZrO_3/PbTiO_3 [1:1] superlattices are presented. The unstable polar modes in the tetragonal (001) and (110) structures are confined in either the Ti- or the Zr-centered layers and display two-mode behavior, while in the cubic (111) case one-mode behavior is observed. Instabilities with pure oxygen character are observed in all three structures. The implications for the ferroelectric behavior and related properties are discussed.Comment: 12 pages, 2 figures, 7 tables, submitted to PR

    Lattice instabilities of cubic NiTi from first principles

    Full text link
    The phonon dispersion relation of NiTi in the simple cubic B2 structure is computed using first-principles density-functional perturbation theory with pseudopotentials and a plane-wave basis set. Lattice instabilities are observed to occur across nearly the entire Brillouin zone, excluding three interpenetrating tubes of stability along the (001) directions and small spheres of stability centered at R. The strongest instability is that of the doubly degenerate M5' mode. The atomic displacements of one of the eigenvectors of this mode generate a good approximation to the observed B19' ground-state structure.Comment: 11 pages, 3 figure

    First-principles study of lattice instabilities in the ferromagnetic martensite Ni2_2MnGa

    Full text link
    The phonon dispersion relations and elastic constants for ferromagnetic Ni2_2MnGa in the cubic and tetragonally distorted Heusler structures are computed using density-functional and density-functional perturbation theory within the spin-polarized generalized-gradient approximation. For 0.9<c/a<1.060.9<c/a<1.06, the TA2_2 tranverse acoustic branch along [110][110] and symmetry-related directions displays a dynamical instability at a wavevector that depends on c/ac/a. Through examination of the Fermi-surface nesting and electron-phonon coupling, this is identified as a Kohn anomaly. In the parent cubic phase the computed tetragonal shear elastic constant, C^\prime=(C11_{11}-C12_{12})/2, is close to zero, indicating a marginal elastic instability towards a uniform tetragonal distortion. We conclude that the cubic Heusler structure is unstable against a family of energy-lowering distortions produced by the coupling between a uniform tetragonal distortion and the corresponding [110][110] modulation. The computed relation between the c/ac/a ratio and the modulation wavevector is in excellent agreement with structural data on the premartensitic (c/ac/a = 1) and martensitic (c/ac/a = 0.94) phases of Ni2_2MnGa.Comment: submitted to Phys. Rev.

    Asthma in patients admitted to emergency department for COVID-19: prevalence and risk of hospitalization

    No full text
    Non

    Assessment of neurological manifestations in hospitalized patients with COVID‐19

    No full text
    corecore