2,084 research outputs found
Post impact evaluation of an E-learning cross-infection control CD-ROM provided to all general dental practitioners in England
Aim To carry out a post-impact evaluation of a cross-infection control CD-ROM, developed for NHS dental teams as a continuing professional development e-learning tool. The program was commissioned by the Department of Health and developed by a project team through the UK Committee of Postgraduate Dental Deans. The Dental Practice Boardhad originally sent one copy of the CD-ROM to each dental practice in England in 2004. Method A quantitative statistical analysis of the results of 326 online respondents to the learning package and a survey of 118 dental practitioners drawn from the Dental Practice Board database. Results Practitioners felt the CD-ROM in this instance was well designed and appropriate for their needs. It is inclusive and accessible to a wide range of dental professionals including nurses and hygienists. Conclusions This form of continuing professional development is popular with dental practitioners, although it should not be the only form of continuing professional development available. However, whilst the project was generally regarded as successful, there were problems with the distribution of the CD-ROM. This suggests that anonline resource should be made available in the future
Sperm death and dumping in Drosophila
Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating
Deep imperative mutations have less impact
Information theory and entropy loss predict deeper more hierarchical software will be more robust. Suggesting silent errors and equivalent mutations will be more common in deeper code, highly structured code will be hard to test, so explaining best practise preference for unit testing of small methods rather than system wide analysis. Using the genetic improvement (GI) tool MAGPIE, we measure the impact of source code mutations and how this varies with execution depth in two diverse multi-level nested software. gem5 is a million line single threaded state-of-the-art C++ discrete time VLSI circuit simulator, whilst PARSEC VIPS is a non-deterministic parallel computing multi-threaded image processing benchmark written in C. More than 28–53% of mutants compile and generate identical results to the original program. We observe 12% and 16% Failed Disruption Propagation (FDP). Excluding internal errors, exceptions and asserts, here most faults below about 30 nested function levels which are Executed and Infect data or divert control flow are not Propagated to the output, i.e. these deep PIE changes have no visible external effect. Suggesting automatic software engineering on highly structured code will be hard
Dissipative polynomials
Limited precision floating point computer implementations of large polynomial arithmetic expressions are nonlinear and dissipative. They are not reversible (irreversible, lack conservation), lose information, and so are robust to perturbations (anti-fragile) and resilient to fluctuations. This gives a largely stable locally flat evolutionary neutral fitness search landscape. Thus even with a large number of test cases, both large and small changes deep within software typically have no effect and are invisible externally. Shallow mutations are easier to detect but their RMS error need not be simple
Software robustness: A survey, a theory, and prospects
If a software execution is disrupted, witnessing the execution at a later point may see evidence of the disruption or not. If not, we say the disruption failed to propagate. One name for this phenomenon is software robustness but it appears in different contexts in software engineering with different names. Contexts include testing, security, reliability, and automated code improvement or repair. Names include coincidental correctness, correctness attraction, transient error reliability. As witnessed, it is a dynamic phenomenon but any explanation with predictive power must necessarily take a static view. As a dynamic/static phenomenon it is convenient to take a statistical view of it which we do by way of information theory. We theorise that for failed disruption propagation to occur, a necessary condition is that the code region where the disruption occurs is composed with or succeeded by a subsequent code region that suffers entropy loss over all executions. The higher is the entropy loss, the higher the likelihood that disruption in the first region fails to propagate to the downstream observation point. We survey different research silos that address this phenomenon and explain how the theory might be exploited in software engineering
Measuring failed disruption propagation in genetic programming
Information theory explains the robustness of deep GP trees, with on average up to 83.3% of crossover run time disruptions failing to propagate to the root node, and so having no impact on fitness, leading to phenotypic convergence. Monte Carlo simulations of perturbations covering the whole tree demonstrate a model based on random synchronisation of the evaluation of the parent and child which cause parent and offspring evaluations to be identical. This predicts the effectiveness of fitness measurement grows slowly as O(log(n)) with number n of test cases. This geometric distribution model is tested on genetic programming symbolic regression
Gravito-electromagnetic analogies
We reexamine and further develop different gravito-electromagnetic (GEM)
analogies found in the literature, and clarify the connection between them.
Special emphasis is placed in two exact physical analogies: the analogy based
on inertial fields from the so-called "1+3 formalism", and the analogy based on
tidal tensors. Both are reformulated, extended and generalized. We write in
both formalisms the Maxwell and the full exact Einstein field equations with
sources, plus the algebraic Bianchi identities, which are cast as the
source-free equations for the gravitational field. New results within each
approach are unveiled. The well known analogy between linearized gravity and
electromagnetism in Lorentz frames is obtained as a limiting case of the exact
ones. The formal analogies between the Maxwell and Weyl tensors are also
discussed, and, together with insight from the other approaches, used to
physically interpret gravitational radiation. The precise conditions under
which a similarity between gravity and electromagnetism occurs are discussed,
and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some
re-write, notation improvements and a new figure that match the published
version; expanded compared to the published version to include Secs. 2.3 and
Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.
<div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
