784 research outputs found

    Oral contraceptives, hormone replacement therapy, thrombophilias and risk of venous thromboembolism: a systematic review The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) Study

    Get PDF
    Combined oral contraceptives,oral hormone replacement therapy and thrombophilias are recognised risk factors for venous thromboembolism in women.The objective of this study was to assess the risk of thromboembolism among women with thrombophilia who are taking oral contraceptives or hormone replacement therapy, conducting a systematic review and metaanalysis. Of 201 studies identified, only nine met the inclusion criteria. Seven studies included pre-menopausal women on oral contraceptives and two studies included peri-menopausal women on hormone replacement therapy. For oral contraceptive use, significant associations of the risk of venous thromboembolism were found in women with factor V Leiden (OR 15.62; 95%CI 8.66 to 28.15); deficiencies of antithrombin (OR 12.60; 95%CI 1.37 to 115.79), protein C (OR 6.33; 95%CI 1.68 to 23.87), or protein S (OR 4.88; 95%CI 1.39 to 17.10), elevated levels of factor VIIIc (OR 8.80; 95%CI 4.13 to 18.75); and factor V Leiden and prothrombin G20210A (OR 7.85; 95%CI 1.65 to 37.41). For hormone replacement therapy, a significant association was found in women with factor V Leiden (OR 13.16; 95%CI 4.28 to 40.47).Although limited by the small number of studies, the findings of this study support the presence of interaction between thrombophilia and venous thromboembolism among women taking oral contraceptives. However, further studies are required to establish with greater confidence the associations of these, and other, thrombophilias with venous thromboembolism among hormone users

    Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models

    Get PDF
    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models

    Development and Interim Evaluation of WeCare Indiana: a Community-tailored Text Messaging Intervention to Reduce Infant Mortality in East Central Indiana

    Get PDF
    poster abstractBackground: Text messaging is an effective way to distribute health information and reduce risky health behaviors.1,2 In 2014, the East Central Indiana Fetal and Infant Mortality Program of the Delaware County Health Department developed a community-based text messaging intervention program called “WeCare Indiana” as an innovative approach to promote positive pregnancy outcomes. This abstract reports the interim evaluation of health promotional text messages for prenatal clients. Methods: The program was developed using a community-collaborative model. Over 200 prenatal and infant health text messages were reviewed and evaluated by community representatives. Messages included information regarding fetal and infant development, health promotion, and risk prevention strategies with links to local resources. Prenatal messages were then reviewed by prenatal clients for their relevance, clarity, and likelihood to change healthrelated behavior during pregnancy. The program was promoted locally and currently has 98 enrollees. A 4-month interim program evaluation was developed to assess program awareness, reasons for enrolling or not enrolling, and overall satisfaction with text message content. A convenience sample of prenatal clients at a Federally Qualified Health Center participated in the evaluation process. Results: Of the 43 prenatal clients that participated, 10 (23%) clients had heard about the health messaging service. Of those participants, 6 (60%) had chosen to enroll in the program. Enrollees reported hearing about the program through word of mouth, posters, fliers, health care providers, and social media. Reasons given for not enrolling included lack of awareness or interest, technical difficulties, and procrastination. All enrollees reported that the messages were helpful. Conclusions: An effort to reduce fetal and infant mortality in East Central Indiana led to the development and evaluation of community-tailored health messages. The evaluation results will be used to encourage client awareness and enrollment in the program

    Nodes of the Gap Function and Anomalies in Thermodynamic Properties of Superfluid 3^3He

    Full text link
    Departures of thermodynamic properties of three-dimensional superfluid 3^3He from the predictions of BCS theory are analyzed. Attention is focused on deviations of the ratios Δ(T=0)/Tc\Delta(T=0)/T_c and [Cs(Tc)Cn(Tc)]/Cn(Tc)[C_s(T_c)-C_n(T_c)]/C_n(T_c) from their BCS values, where Δ(T=0)\Delta(T=0) is the pairing gap at zero temperature, TcT_c is the critical temperature, and CsC_s and CnC_n are the superfluid and normal specific heats. We attribute these deviations to the momentum dependence of the gap function Δ(p)\Delta(p), which becomes well pronounced when this function has a pair of nodes lying on either side of the Fermi surface. We demonstrate that such a situation arises if the P-wave pairing interaction V(p1,p2)V(p_1,p_2), evaluated at the Fermi surface, has a sign opposite to that anticipated in BCS theory. Taking account of the momentum structure of the gap function, we derive a closed relation between the two ratios that contains no adjustable parameters and agrees with the experimental data. Some important features of the effective pairing interaction are inferred from the analysis.Comment: 17 pages, 4 figure

    Gauge dependence of effective action and renormalization group functions in effective gauge theories

    Get PDF
    The Caswell-Wilczek analysis on the gauge dependence of the effective action and the renormalization group functions in Yang-Mills theories is generalized to generic, possibly power counting non renormalizable gauge theories. It is shown that the physical coupling constants of the classical theory can be redefined by gauge parameter dependent contributions of higher orders in \hbar in such a way that the effective action depends trivially on the gauge parameters, while suitably defined physical beta functions do not depend on those parameters.Comment: 13 pages Latex file, additional comments in section

    Fluid evolution in CM carbonaceous chondrites tracked through the oxygen isotopic compositions of carbonates

    Get PDF
    The oxygen isotopic compositions of calcite grains in four CM carbonaceous chondrites have been determined by NanoSIMS, and results reveal that aqueous solutions evolved in a similar manner between parent body regions with different intensities of aqueous alteration. Two types of calcite were identified in Murchison, Mighei, Cold Bokkeveld and LaPaz Icefield 031166 by differences in their petrographic properties and oxygen isotope values. Type 1 calcite occurs as small equant grains that formed by filling of pore spaces in meteorite matrices during the earliest stages of alteration. On average, the type 1 grains have a δ18O of ∼32–36‰ (VSMOW), and Δ17O of between ∼2‰ and −1‰. Most grains of type 2 calcite precipitated after type 1. They contain micropores and inclusions, and have replaced ferromagnesian silicate minerals. Type 2 calcite has an average δ18O of ∼21–24‰ (VSMOW) and a Δ17O of between ∼−1‰ and −3‰. Such consistent isotopic differences between the two calcite types show that they formed in discrete episodes and from solutions whose δ18O and δ17O values had changed by reaction with parent body silicates, as predicted by the closed-system model for aqueous alteration. Temperatures are likely to have increased over the timespan of calcite precipitation, possibly owing to exothermic serpentinisation. The most highly altered CM chondrites commonly contain dolomite in addition to calcite. Dolomite grains in two previously studied CM chondrites have a narrow range in δ18O (∼25–29‰ VSMOW), with Δ17O ∼−1‰ to −3‰. These grains are likely to have precipitated between types 1 and 2 calcite, and in response to a transient heating event and/or a brief increase in fluid magnesium/calcium ratios. In spite of this evidence for localised excursions in temperature and/or solution chemistry, the carbonate oxygen isotope record shows that fluid evolution was comparable between many parent body regions. The CM carbonaceous chondrites studied here therefore sample either several parent bodies with a very similar initial composition and evolution or, more probably, a single C-type asteroid

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Wavelet analysis of epileptic spikes

    Get PDF
    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.Comment: 4 pages, 3 figure

    Western oceanus procellarum as seen by c1xs on chandrayaan-1

    Get PDF
    We present the analysis of an X-ray fluorescence (XRF) observation of the western part of Oceanus Procellarum on the Moon’s nearside made by the Chandrayaan-1 X-ray Spectrometer on 10th February 2009. Through forward modelling of the X-ray spectra, we provide estimates of the MgO/SiO2 and Al2O3/SiO2 ratios for seven regions along the flare’s ground track. These results are combined with FeO and TiO2 contents derived from Clementine multispectral reflectance data in order to investigate the compositional diversity of this region of the Moon. The ground track observed consists mainly of low-Ti basaltic units, and the XRF data are largely consistent with this expectation. However, we obtain higher Al2O3/SiO2 ratios for these units than for most basalts in the Apollo sample collection. The widest compositional variation between the different lava flows is in wt% FeO content. A footprint that occurs in a predominantly highland region, immediately to the north of Oceanus Procellarum, has a composition that is consistent with mixing between low-Ti mare basaltic and more feldspathic regoliths. In contrast to some previous studies, we find no evidence for systematic differences in surface composition, as determined through X-ray and gamma-ray spectroscopy techniques

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure
    corecore