257 research outputs found

    Lianas Suppress Seedling Growth and Survival of 14 Tree Species in a Panamanian Tropical Forest

    Get PDF
    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well‐replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large‐scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 × 80 m plots (eight liana‐removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two‐yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana‐removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter tropical tree species diversity, relative abundance, or community composition

    Exposure to Tobacco Smoke and Chronic Asthma Symptoms

    Full text link
    The objective was to determine if tobacco exposure is associated with year-round asthma symptoms. We analyzed baseline data from a multistate survey of 896 pediatric patients with asthma participating in a randomized controlled trial. Daytime symptoms, nocturnal symptoms, and limitations in activity because of asthma tend to increase during the winter season (p < 0.05 for all comparisons, except spring to winter daytime symptoms). One hundred forty of 896 (16%) children had year-round symptoms (i.e., active asthma symptoms during every season). Using separate multivariate analyses, we found that having a parent who smokes (odds ratio [OR]: 2.22; 95% confidence interval [CI]: 1.35, 3.64) or a member of the household who smokes (OR: 1.94; 95% CI: 1.29, 2.93) was associated with a higher likelihood of year-round symptoms, controlling for region of residence, insurance status, and use of a daily controller medication. Asthma symptoms are more likely to increase in the winter season. In anticipation of these patterns, clinicians should consider initiating controller medication therapy or reinforcing asthma education prior to these time periods for those patients at risk for seasonal exacerbations. Exposure to tobacco smoke is associated with year-round asthma symptoms, highlighting the importance of health care providers identifying and counseling about smoking cessation, especially for children with year-round asthma symptoms. (Pediatr Asthma Immunol 2005; 18[4]:180–188.)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63404/1/pai.2005.18.180.pd

    Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems

    Get PDF
    This article gives an,overview of the microscopic theory,theory used to quantitatively model a wide range of semiconductor laser gain materials. As a snapshot of the current state of research, applications to a variety of actual quantum-well systems are presented. Detailed theory experiment comparisons are shown and it is analyze how the theory can be used to extract poorly known material parameters. The intrinsic laser loss processes due to radiative and nonradiative Auger recombination are evaluated microscopically. The results are used for realistic simulations of vertical-external-cavity surface-emitting laser systems. To account for nonequilibrium effects, a simplified model is presented using pre-computed microscopic scattering and dephasing rates. Prominent deviations from quasi-equilibrium carrier distributions are obtained under strong in-well pumping conditions

    Innovation and access to technologies for sustainable development: diagnosing weaknesses and identifying interventions in the Transnational Arena

    Get PDF
    Sustainable development – improving human well-being across present generations without compromising the ability of future generations to meet their own needs – is a central challenge for the 21st century. Technological innovation can play an important role in moving society toward sustainable development. However, poor, marginalized, and future populations often do not fully benefit from innovation due to their lack of market or political power to influence innovation processes. As a result, current innovation systems fail to contribute as much as they might to meeting sustainable development goals. This paper focuses on how actors and institutions operating in the transnational arena can mitigate such shortfalls. To identify the most important transnational functions required to meet sustainable development needs our analysis undertook three main steps. First, we developed a framework to diagnose blockages in the global innovation system for particular technologies. This framework was built on existing theory and new empirical analysis. On the theory side, we drew from the literatures of systems dynamics; technology and sectoral innovation systems, science and technology studies, the economics of innovation, and global governance. On the empirical front, we conducted eighteen detailed case studies of technology innovation in multiple sectors relevant to sustainable development: water, energy, health, food, and manufactured goods. We use the framework to analyze our case studies in the common language of (1) technology stocks, (2) non-linear flows between stocks substantiated by specific mechanisms, and (3) characteristics of actors and socio-technical conditions (STCs) which mediate the flows between stocks . We identify blockages in the innovation system for each of the cases, diagnosing where in the innovation system flows were hindered and which specific sets of STCs and actor characteristics were associated with these blockages. Figure E.1 displays the components of our framework and how they relate

    How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground

    Get PDF
    The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant–microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant–microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes

    Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests

    Get PDF
    Mature tropical forests sequester large quantities of atmospheric CO2, which they store as plant biomass. These forests are changing however, including an increase in liana abundance and biomass over recent decades in Neotropical forests. We ask here how this increase in lianas might impact the tropical forest carbon cycle and their capacity for carbon storage and sequestration. Lianas reduce tree growth, survival, and leaf productivity; however, lianas also invest significantly in leaf production, and the increase in lianas could conceivably offset liana‐induced reductions in tree canopy productivity with no adverse effects to the forest‐level canopy productivity. By contrast, lianas decrease the total ecosystem uptake of carbon by reducing tree biomass productivity. Lianas themselves invest little in woody biomass, and store and sequester only a small proportion of the biomass in tropical forests. As lianas increase they may effectively displace trees, but the greater liana carbon stocks are unlikely to compensate for liana‐induced losses in net carbon sequestration and storage by trees. A potentially important additional consideration is the impact of lianas on the tree community. By competing more intensely with shade‐tolerant, more densely wooded trees than with fast‐growing, light‐wooded trees, lianas may shift tree composition toward faster‐growing species, which store relatively little carbon, and thereby further reduce the carbon storage capacity of tropical forests. Overall, current evidence indicates that the increase in lianas will negatively impact the carbon balance of tropical forests, with potentially far‐reaching consequences for global atmospheric CO2 levels and associated climate change

    Losing ourselves:Active inference, depersonalization, and meditation

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordDisruptions in the ordinary sense of selfhood underpin both pathological and “enlightened” states of consciousness. People suffering from depersonalization can experience the loss of a sense of self as devastating, often accompanied by intense feelings of alienation, fear, and hopelessness. However, for meditative contemplatives from various traditions, “selfless” experiences are highly sought after, being associated with enduring peace and joy. Little is understood about how these contrasting dysphoric and euphoric experiences should be conceptualized. In this paper, we propose a unified account of these selfless experiences within the active inference framework. Building on our recent active inference research, we propose an account of the experiences of selfhood as emerging from a temporally deep generative model. We go on to develop a view of the self as playing a central role in structuring ordinary experience by “tuning” agents to the counterfactually rich possibilities for action. Finally, we explore how depersonalization may result from an inferred loss of allostatic control and contrast this phenomenology with selfless experiences reported by meditation practitioners. We will show how, by beginning with a conception of self-modeling within an active inference framework, we have available to us a new way of conceptualizing the striking experiential similarities and important differences between these selfless experiences within a unifying theoretical framework. We will explore the implications for understanding and treating dissociative disorders, as well as elucidate both the therapeutic potential, and possible dangers, of meditation.European Union Horizon 202
    corecore