56 research outputs found

    Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies

    Get PDF
    Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR’s genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects

    Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments

    Get PDF
    Although adverse effects and glucocorticoid resistance cripple their chronic use, glucocorticoids form the mainstay therapy for acute and chronic inflammatory disorders, and play an important role in treatment protocols of both lymphoid malignancies and as adjuvant to stimulate therapy tolerability in various solid tumors. Glucocorticoid binding to their designate glucocorticoid receptor (GR), sets off a plethora of cell-specific events including therapeutically desirable effects, such as cell death, as well as undesirable effects, including chemotherapy resistance, systemic side effects and glucocorticoid resistance. In this context, selective GR agonists and modulators (SEGRAMs) with a more restricted GR activity profile have been developed, holding promise for further clinical development in anti-inflammatory and potentially in cancer therapies. Thus far, the research into the prospective benefits of selective GR modulators in cancer therapy limped behind. Our review discusses how selective GR agonists and modulators could improve the therapy regimens for lymphoid malignancies, prostate or breast cancer. We summarize our current knowledge and look forward to where the field should move to in the future. Altogether, our review clarifies novel therapeutic perspectives in cancer modulation via selective GR targeting

    Effect of combining glucocorticoids with Compound A on glucocorticoid receptor responsiveness in lymphoid malignancies

    Get PDF
    Glucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs. Compound A (CpdA) is a prototypical example of such a selective glucocorticoid receptor modulator and does not support GR-mediated transactivation. Here, we examined whether the combination of CpdA with the classic GC dexamethasone (Dex) may improve GC responsiveness of MM and ALL cell lines. We find that the combination of Dex and CpdA does not substantially enhance GC-mediated cell killing. In line, several apoptosis hallmarks, such as caspase 3/7 activity, PARP cleavage and the levels of cleaved-caspase 3 remain unchanged upon combining Dex with CpdA. Moreover, we monitor no additional inhibition of cell proliferation and the homologous downregulation of GR is not counteracted by the combination of Dex and CpdA. In addition, CpdA is unable to modulate Dex-liganded GR transactivation and transrepression, yet, Dex-mediated transrepression is also aberrant in these lymphoid cell lines. Together, transrepression-favoring compounds, alone or combined with GCs, do not seem a valid strategy in the treatment of lymphoid malignancies

    The Fukui matrix : a simple approach to the analysis of the Fukui function and its positive character

    Get PDF
    The Fukui matrix is introduced as the derivative of the one-electron reduced density matrix with respect to a change in the number of electrons under constant external potential. The Fukui matrix extends the Fukui function concept: the diagonal of the Fukui matrix is the Fukui function. Diagonalizing the Fukui matrix gives a set of eigenvectors, the Fukui orbitals, and accompanying eigenvalues. At the level of theory used, there is always one dominant eigenvector, with an eigenvalue equal to 1. The remaining eigenvalues are either zero or come in pairs with eigenvalues of the same magnitude but opposite sign. Analysis of the frontier molecular orbital coefficient in the eigenvector with eigenvalue 1 gives information on the quality of the frontier molecular orbital picture. The occurrence of negative Fukui functions can be easily interpreted in terms of the nodal character of the dominant eigenvector versus the characteristics of the remaining eigenvectors and eigenvalues

    The increasing complexity of glucocorticoid receptor signaling and regulation

    Get PDF
    Glucocorticoids, although being one of the eldest drugs in the clinic and despite their widespread usage for the treatment of inflammatory and immune disorders and cancer, have not yet come of age when it comes to a full understanding of how they work. The majority of the biological actions of glucocorticoid hormones are explained by a wide diversity in the cellular action mechanism of the hormone-activated Glucocorticoid Receptor (GR). All molecular mechanisms described in the current overview are not only complex, exhibiting an astonishing degree of gene- and tissue-specificity, but on top of this they are also non-exclusive. This layering of mechanisms makes it extremely difficult for researchers to extract the crucial pieces of information that would assist in a rational design of drugs with an improved therapeutic profile, i.e. a satisfying and maintained therapeutic response in the absence of the many incapacitating glucocorticoid-associated side effects, such as diabetes, osteoporosis, muscle wasting, depression etc. In direct correlation with increased glucocorticoid usage as observed in the clinic, the impetus and desire to reveal all of these mechanisms -and most importantly, to try to integrate them in a sensible manner for the sake of finding better alternatives- has never been stronger

    Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies

    Get PDF
    Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1 alpha, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples

    Compound A, a selective glucocorticoid receptor modulator, enhances heat shock protein Hsp70 gene promoter activation

    Get PDF
    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-kappa B-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated I kappa B alpha degradation and NF-kappa B p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA's anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells
    • …
    corecore