44 research outputs found

    Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    Get PDF
    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures

    Polarizabilities of Adsorbed and Assembled Molecules: Measuring the Conductance through Buried Contacts

    Get PDF
    We have measured the polarizabilities of four families of molecules adsorbed to Au{111} surfaces, with structures ranging from fully saturated to fully conjugated, including single-molecule switches. Measured polarizabilities increase with increasing length and conjugation in the adsorbed molecules and are consistent with theoretical calculations. For single-molecule switches, the polarizability reflects the difference in substrate-molecule electronic coupling in the ON and OFF conductance states. Calculations suggest that the switch between the two conductance states is correlated with an oxidation state change in a nitro functional group in the switch molecules

    Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Get PDF
    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution
    corecore