124 research outputs found

    Cloud and Star Formation in Spiral Arms

    Full text link
    We present the results from simulations of GMC formation in spiral galaxies. First we discuss cloud formation by cloud-cloud collisions, and gravitational instabilities, arguing that the former is prevalent at lower galactic surface densities and the latter at higher. Cloud masses are also limited by stellar feedback, which can be effective before clouds reach their maximum mass. We show other properties of clouds in simulations with different levels of feedback. With a moderate level of feedback, properties such as cloud rotations and virial parameters agree with observations. Without feedback, an unrealistic population of overly bound clouds develops. Spiral arms are not found to trigger star formation, they merely gather gas into more massive GMCs. We discuss in more detail interactions of clouds in the ISM, and argue that these are more complex than early ideas of cloud-cloud collisions. Finally we show ongoing work to determine whether the Milky Way is a flocculent or grand design spiral.Comment: 10 pages, 5 figures, to be published in Seychelles conference "Lessons from the Local Group", ed. K. C. Freeman, B. G. Elmegreen, D. L. Block, and M. Woolway (Dordrecht: Springer), 201

    Dawes Review 4: Spiral Structures in Disc Galaxies

    Full text link
    The majority of astrophysics involves the study of spiral galaxies, and stars and planets within them, but how spiral arms in galaxies form and evolve is still a fundamental problem. Major progress in this field was made primarily in the 1960s, and early 1970s, but since then there has been no comprehensive update on the state of the field. In this review, we discuss the progress in theory, and in particular numerical calculations, which unlike in the 1960s and 1970s, are now commonplace, as well as recent observational developments. We set out the current status for different scenarios for spiral arm formation, the nature of the spiral arms they induce, and the consequences for gas dynamics and star formation in different types of spiral galaxies. We argue that, with possible the exception of barred galaxies, spiral arms are transient, recurrent and initiated by swing amplified instabilities in the disc. We suppose that unbarred m = 2 spiral patterns are induced by tidal interactions, and slowly wind up over time. However the mechanism for generating spiral structure does not appear to have significant consequences for star formation in galaxies.Comment: 44 pages, 20 pages, review article accepted for publication in PAS

    Star formation in galaxies: the role of spiral arms

    Full text link
    Studying star formation in spiral arms tells us not only about the evolution of star formation, and molecular clouds, but can also tell us about the nature of spiral structure in galaxies. I will address both these topics using the results of recent simulations and observations. Galactic scale simulations are beginning to examine in detail the evolution of GMCs as they form in spiral arms, and then disperse by stellar feedback or shear. The overall timescale for this process appears comparable to the crossing time of the GMCs, a few Myrs for 10510^5 M_{\odot} clouds, 20 Myr or so for more massive GMCs. Both simulations and observations show that the massive clouds are found in the spiral arms, likely as a result of cloud-cloud collisions. Simulations including stars should also tell us about the stellar age distribution in GMCs, and across spiral arms. More generally, recent work on spiral galaxies suggests that the dynamics of gas flows in spiral arms are different in longlived and transient spiral arms, resulting in different age patterns in the stars. Such results could be used to help establish the main driver of spiral structure in the Milky Way (Toomre instabilities, the bar, or nearby companion galaxies) in conjunction with future surveys.Comment: 7 pages, 3 figures, invited review, to appear in Proceedings of the IAU Symposium No. 298, "Setting the scene for Gaia and LAMOST

    Iron and silicate dust growth in the Galactic interstellar medium: clues from element depletions

    Get PDF
    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, that increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the lifecycle of giant molecular clouds (GMCs) proves that the observed trend for [Sigas_{gas}/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks (Zhukovska et al. 2016). With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas_{gas}/H]nH-n_H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: ``Where is the interstellar iron?'. Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from sputtering by SN shocks. The slope of the observed [Fegas_{gas}/H]nH-n_H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1-10nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the observed slopes of the relations between depletion and density and the magnitudes of depletion at high density.Comment: Accepted for publication in the ApJ, 15 pages, 9 figure

    Spiral arm triggering of star formation

    Get PDF
    We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinetic energy, producing regions that are locally gravitationally bound and collapse to form stars. In addition to triggering the star formation process, the clumpy gas passing through the shock naturally generates the observed velocity dispersion size relation of molecular clouds. In this scenario, the internal motions of GMCs need not be turbulent in nature. The coupling of the clouds' internal kinematics to their externally triggered formation removes the need for the clouds to be self-gravitating. Globally unbound molecular clouds provides a simple explanation of the low efficiency of star formation. While dense regions in the shock become bound and collapse to form stars, the majority of the gas disperses as it leaves the spiral arm.Comment: 6 pages, 4 figures: IAU 237, Triggering of star formation in turbulent molecular clouds, eds B. Elmegreen and J. Palou

    Using synthetic emission maps to constrain the structure of the Milky Way

    Full text link
    We present the current standing of an investigation into the structure of the Milky Way. We use smoothed particle hydrodynamics (SPH) to simulate the ISM gas in the Milky Way under the effect of a number of different gravitational potentials representing the spiral arms and nuclear bars, both fixed and time-dependent. The gas is subject to ISM cooling and chemistry, enabling us to track the CO and HI density. We use a 3D grid-based radiative transfer code to simulate the emission from the SPH output, allowing for the construction of synthetic longitude-velocity maps as viewed from the Earth. By comparing these maps with the observed emission in CO and HI from the Milky Way (Dame et al. 2001, Kalberla et al. 2005), we can infer the arm/bar geometry that provides a best fit to our Galaxy. By doing so we aim to answer key questions concerning the morphology of the Milky Way such as the number of the spiral arms, the pattern speeds of the bar(s) and arms, the pitch angle of the arms and shape of the bar(s)Comment: 6 pages, 5 figures, contributed talk, to appear in Proceedings of the IAU Symposium No. 298, "Setting the scene for Gaia and LAMOST

    Shocks, cooling and the origin of star formation rates in spiral galaxies

    Get PDF
    Understanding star formation is problematic as it originates in the large scale dynamics of a galaxy but occurs on the small scale of an individual star forming event. This paper presents the first numerical simulations to resolve the star formation process on sub-parsec scales, whilst also following the dynamics of the interstellar medium (ISM) on galactic scales. In these models, the warm low density ISM gas flows into the spiral arms where orbit crowding produces the shock formation of dense clouds, held together temporarily by their external pressure. Cooling allows the gas to be compressed to sufficiently high densities that local regions collapse under their own gravity and form stars. The star formation rates follow a Schmidt-Kennicutt \Sigma_{SFR} ~ \Sigma_{gas}^{1.4} type relation with the local surface density of gas while following a linear relation with the cold and dense gas. Cooling is the primary driver of star formation and the star formation rates as it determines the amount of cold gas available for gravitational collapse. The star formation rates found in the simulations are offset to higher values relative to the extragalactic values, implying a constant reduction, such as from feedback or magnetic fields, is likely to be required. Intriguingly, it appears that a spiral or other convergent shock and the accompanying thermal instability can explain how star formation is triggered, generate the physical conditions of molecular clouds and explain why star formation rates are tightly correlated to the gas properties of galaxies.Comment: 13 pages, 12 figures. MNRAS in pres

    Modelling Dust Evolution in Galaxies with a Multiphase, Inhomogeneous ISM

    Get PDF
    We develop a model of dust evolution in a multiphase, inhomogeneous ISM including dust growth and destruction processes. The physical conditions for grain evolution are taken from hydrodynamical simulations of giant molecular clouds in a Milky Way-like spiral galaxy. We improve the treatment of dust growth by accretion in the ISM to investigate the role of the temperature-dependent sticking coefficient and ion-grain interactions. From detailed observational data on the gas-phase Si abundances [Si/H]_{gas} measured in the local Galaxy, we derive a relation between the average [Si/H]_{gas} and the local gas density n(H) which we use as a critical constraint for the models. This relation requires a sticking coefficient that decreases with the gas temperature. The synthetic relation constructed from the spatial dust distribution reproduces the slope of -0.5 of the observed relation in cold clouds. This slope is steeper than that for the warm medium and is explained by the dust growth. We find that it occurs for all adopted values of the minimum grain size a_{min} from 1 to 5nm. For the classical cut-off of a_{min}=5 nm, the ion-grain interactions result in longer growth timescales and higher [Si/H]_{gas} than the observed values. For a_{min} below 3 nm, the ion-grain interactions enhance the growth rates, steepen the slope of [Si/H]_{gas}-n(H) relation and provide a better match to observations. The rates of dust re-formation in the ISM by far exceed the rates of dust production by stellar sources as expected from simple evolution models. After the cycle of matter in and out of dust reaches a steady state, the dust growth balances the destruction operating on similar timescales of 350 Myr.Comment: 17 pages, 11 figures, accepted to Ap

    Synthetic Observations of the HI Line in SPH-Simulated Spiral Galaxies

    Get PDF
    Using the radiative transfer code Torus, we produce spectral-line cubes of the predicted HI profile from global SPH simulations of spiral galaxies. Torus grids the SPH galaxy using Adaptive Mesh Refinement, then applies a ray-tracing method to infer the HI profile along the line(s) of sight. The gridded galaxy can be observed from any direction, which enables us to model the observed HI profile for galaxies of any orientation. We can also place the observer inside the galaxy, to simulate HI observations taken from the Earth's position in the Milky Way.Comment: 4 pages, 2 figures, conference proceedings for "Panoramic Radio Astronomy: 1-2 Ghz Research on Galaxy Evolution" June 2-5, 2009 Groninge
    corecore