9,102 research outputs found
Convicts and coolies : rethinking indentured labour in the nineteenth century
This article seeks to shift the frame of analysis within which discussions of Indian indentured migration take place. It argues that colonial discourses and practices of indenture are best understood not with regard to the common historiographical framework of whether it was 'a new system of slavery', but in the context of colonial innovations in incarceration and confinement. The article shows how Indian experiences of and knowledge about transportation overseas to penal settlements informed in important ways both their own understandings and representations of migration and the colonial practices associated with the recruitment of indentured labour. In detailing the connections between two supposedly different labour regimes, it thus brings a further layer of complexity to debates around their supposed distinctions
Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity
Transitions in structural heterogeneity of colloidal depletion gels formed
through short-range attractive interactions are correlated with their dynamical
arrest. The system is a density and refractive index matched suspension of 0.20
volume fraction poly(methyl methacyrlate) colloids with the non-adsorbing
depletant polystyrene added at a size ratio of depletant to colloid of 0.043.
As the strength of the short-range attractive interaction is increased,
clusters become increasingly structurally heterogeneous, as characterized by
number-density fluctuations, and dynamically immobilized, as characterized by
the single-particle mean-squared displacement. The number of free colloids in
the suspension also progressively declines. As an immobile cluster to gel
transition is traversed, structural heterogeneity abruptly decreases.
Simultaneously, the mean single-particle dynamics saturates at a localization
length on the order of the short-range attractive potential range. Both
immobile cluster and gel regimes show dynamical heterogeneity. Non-Gaussian
distributions of single particle displacements reveal enhanced populations of
dynamical trajectories localized on two different length scales. Similar
dependencies of number density fluctuations, free particle number and dynamical
length scales on the order of the range of short-range attraction suggests a
collective structural origin of dynamic heterogeneity in colloidal gels.Comment: 14 pages, 10 figure
Inductive power transfer in e-textile applications: Reducing the effects of coil misalignment
Wireless power transfer (WPT) is an attractive approach for recharging wearable technologies and therefore textile implementations are of interest. Such textile WPT systems are inherently flexible and prone to misalignments of the inductively coupled coils which affects performance. This paper investigates two methods to reduce the effect of coil misalignment in inductive WPT in e-textile applications: a single large transmitter coil and a switched transmitter coil array. Transmission efficiency and maximum received power are determined for both methods, and compared against the baseline system that uses a single small transmitter coil. All coils used in this study were fabricated using automated stitching of PTFE insulated flexible wire onto a polyester/cotton textile. This fabrication method allows coils to be sewn directly to existing garments
Step-Wise Computational Synthesis of Fullerene C60 derivatives. 1.Fluorinated Fullerenes C60F2k
The reactions of fullerene C60 with atomic fluorine have been studied by
unrestricted broken spin-symmetry Hartree-Fock (UBS HF) approach implemented in
semiempirical codes based on AM1 technique. The calculations were focused on a
sequential addition of fluorine atom to the fullerene cage following indication
of the cage atom highest chemical susceptibility that is calculated at each
step. The effectively-non-paired-electron concept of the fullerene atoms
chemical susceptibility lays the foundation of the suggested computational
synthesis. The obtained results are analyzed from energetic, symmetry, and the
composition abundance viewpoints. A good fitting of the data to experimental
findings proves a creative role of the suggested synthesis methodology.Comment: 33 pages, 11 figures, 2 tables, 2 chart
An Intercomparison of Ground-based Solar FTIR Measurements of Atmospheric Gases at Eureka, Canada
We report the results of an intercomparison of vertical column amounts of hydrogen chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), ozone (O3), carbon dioxide (CO2) and nitrogen (N2) derived from the spectra recorded by two ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the sun as a source. The procedure used to record spectra and derive vertical column amounts follows the format of previous instrument intercomparisons organised by the Network for Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for Detection of Stratospheric Change (NDSC). For most gases the differences were typically around 3% and in about half of the results the error bars given by the standard deviation of the measurements from each instrument did not overlap. The worst level of agreement was for HF where differences of over 5% were typical. The level of agreement achieved during this intercomparison is a little worse than that achieved in previous intercomparisons between ground-based FTIR spectrometers
The directed flow maximum near c_s=0
We investigate the excitation function of quark-gluon plasma formation and of
directed in-plane flow of nucleons in the energy range of the BNL-AGS and for
the E(Lab)=40AGeV Pb+Pb collisions performed recently at the CERN-SPS. We
employ the three-fluid model with dynamical unification of kinetically
equilibrated fluid elements. Within our model with first-order phase transition
at high density, droplets of QGP coexisting with hadronic matter are produced
already at BNL-AGS energies, E(Lab)=10AGeV. A substantial decrease of the
isentropic velocity of sound, however, requires higher energies, E(Lab)=40AGeV.
We show the effect on the flow of nucleons in the reaction plane. According to
our model calculations, kinematic requirements and EoS effects work
hand-in-hand at E(Lab)=40AGeV to allow the observation of the dropping velocity
of sound via an increase of the directed flow around midrapidity as compared to
top BNL-AGS energy.Comment: 10 pages, 4 figures; plot of p(e) at various specific entropies shows
why mixed phase is not soft at AGS energ
Decoherence of a Josephson qubit due to coupling to two level systems
Noise and decoherence are major obstacles to the implementation of Josephson
junction qubits in quantum computing. Recent experiments suggest that two level
systems (TLS) in the oxide tunnel barrier are a source of decoherence. We
explore two decoherence mechanisms in which these two level systems lead to the
decay of Rabi oscillations that result when Josephson junction qubits are
subjected to strong microwave driving. (A) We consider a Josephson qubit
coupled resonantly to a two level system, i.e., the qubit and TLS have equal
energy splittings. As a result of this resonant interaction, the occupation
probability of the excited state of the qubit exhibits beating. Decoherence of
the qubit results when the two level system decays from its excited state by
emitting a phonon. (B) Fluctuations of the two level systems in the oxide
barrier produce fluctuations and 1/f noise in the Josephson junction critical
current I_o. This in turn leads to fluctuations in the qubit energy splitting
that degrades the qubit coherence. We compare our results with experiments on
Josephson junction phase qubits.Comment: 23 pages, Latex, 6 encapsulated postscript figure
Quantum picturalism for topological cluster-state computing
Topological quantum computing is a way of allowing precise quantum
computations to run on noisy and imperfect hardware. One implementation uses
surface codes created by forming defects in a highly-entangled cluster state.
Such a method of computing is a leading candidate for large-scale quantum
computing. However, there has been a lack of sufficiently powerful high-level
languages to describe computing in this form without resorting to single-qubit
operations, which quickly become prohibitively complex as the system size
increases. In this paper we apply the category-theoretic work of Abramsky and
Coecke to the topological cluster-state model of quantum computing to give a
high-level graphical language that enables direct translation between quantum
processes and physical patterns of measurement in a computer - a "compiler
language". We give the equivalence between the graphical and topological
information flows, and show the applicable rewrite algebra for this computing
model. We show that this gives us a native graphical language for the design
and analysis of topological quantum algorithms, and finish by discussing the
possibilities for automating this process on a large scale.Comment: 18 pages, 21 figures. Published in New J. Phys. special issue on
topological quantum computin
On dispersive energy transport and relaxation in the hopping regime
A new method for investigating relaxation phenomena for charge carriers
hopping between localized tail states has been developed. It allows us to
consider both charge and energy {\it dispersive} transport. The method is based
on the idea of quasi-elasticity: the typical energy loss during a hop is much
less than all other characteristic energies. We have investigated two models
with different density of states energy dependencies with our method. In
general, we have found that the motion of a packet in energy space is affected
by two competing tendencies. First, there is a packet broadening, i.e. the
dispersive energy transport. Second, there is a narrowing of the packet, if the
density of states is depleting with decreasing energy. It is the interplay of
these two tendencies that determines the overall evolution. If the density of
states is constant, only broadening exists. In this case a packet in energy
space evolves into Gaussian one, moving with constant drift velocity and mean
square deviation increasing linearly in time. If the density of states depletes
exponentially with decreasing energy, the motion of the packet tremendously
slows down with time. For large times the mean square deviation of the packet
becomes constant, so that the motion of the packet is ``soliton-like''.Comment: 26 pages, RevTeX, 10 EPS figures, submitted to Phys. Rev.
- …