48 research outputs found

    Bulk and single-molecule analysis of a bacterial DNA2-like helicase-nuclease reveals a single-stranded DNA looping motor

    Get PDF
    DNA2 is an essential enzyme involved in DNA replication and repair in eukaryotes. In a search for homologues of this protein, we identified and characterised Geobacillus stearothermophilus Bad, a bacterial DNA helicase-nuclease with similarity to human DNA2. We show that Bad contains an Fe-S cluster and identify four cysteine residues that are likely to co-ordinate the cluster by analogy to DNA2. The purified enzyme specifically recognises ss-dsDNA junctions and possesses ssDNA-dependent ATPase, ssDNA binding, ssDNA endonuclease, 5' to 3' ssDNA translocase and 5' to 3' helicase activity. Single molecule analysis reveals that Bad is a processive DNA motor capable of moving along DNA for distances of >4 kb at a rate of ∼200 bp per second at room temperature. Interestingly, as reported for the homologous human and yeast DNA2 proteins, the DNA unwinding activity of Bad is cryptic and can be unmasked by inactivating the intrinsic nuclease activity. Strikingly, our experiments show that the enzyme loops DNA while translocating, which is an emerging feature of processive DNA unwinding enzymes. The bacterial Bad enzymes will provide an excellent model system for understanding the biochemical properties of DNA2-like helicase-nucleases and DNA looping motor proteins in general.Wellcome Trust [100401/Z/12/Z to M.D.]; EuropeanResearch Council [681299 to F.M.-H.]; Spanish Min-istry of Economy and Competitiveness [BFU2017-83794-PAEI/FEDER, UE to F.M.-H.]; Comunidad de MadridTec4Bio [S2018/NMT-4443 to F.M.-H.]; NanoBioCancer[Y2018/BIO-4747 to F.M.-H.]. Funding for open accesscharge: Wellcome Trust [100401/Z/12/Z].Peer reviewe

    Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA

    Get PDF
    Human DNA helicase B (HELB) is a poorly characterized helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single-molecule approaches to characterize the biochemical activities of HELB protein with a particular focus on its interactions with Replication Protein A (RPA) and RPA–single-stranded DNA (ssDNA) filaments. HELB is a monomeric protein that binds tightly to ssDNA with a site size of ∼20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5′ to 3′ direction accompanied by the formation of DNA loops. HELB also displays classical helicase activity, but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA, which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from ssDNA. This activity, which can allow other proteins access to ssDNA intermediates despite their shielding by RPA, may underpin the diverse roles of HELB in cellular DNA transactions.[Significance] Single-stranded DNA (ssDNA) is a key intermediate in many cellular DNA transactions, including DNA replication, repair, and recombination. Nascent ssDNA is rapidly bound by the Replication Protein A (RPA) complex, forming a nucleoprotein filament that both stabilizes ssDNA and mediates downstream processing events. Paradoxically, however, the very high affinity of RPA for ssDNA may block the recruitment of further factors. In this work, we show that RPA–ssDNA nucleoprotein filaments are specifically targeted by the human HELB helicase. Recruitment of HELB by RPA–ssDNA activates HELB translocation activity, leading to processive removal of upstream RPA complexes. This RPA clearance activity may underpin the diverse roles of HELB in replication and recombination.Work in the laboratory of M.S.D. was supported by an Elizabeth Blackwell Early Career Fellowship from the University of Bristol (to O.J.W.) and Wellcome Trust Investigator Grant 100401/Z/12/Z (to M.S.D.). Work in the laboratory of E.A. was supported by NIH Grants GM130746 (to E.A.) and GM133967 (to E.A.). F.M.-H. acknowledges support from the European Research Council under European Union Horizon 2020 Research and Innovation Program Grant Agreement 681299. Work in the laboratory of F.M.-H. was also supported by Spanish Ministry of Science and Innovation Grants BFU2017-83794-P (AEI/FEDER, UE; to F.M.-H.) and PID2020-112998GB-100 (AEI/10.13039/501100011033; to F.M.-H.) and Comunidad de Madrid Grants Tec4-Bio–S2018/NMT-4443 (to F.M.-H.) and NanoBioCancer–Y2018/BIO-4747 (to F.M.-H.)

    Gemini Cationic Lipid-Type Nanovectors Suitable for the Transfection of Therapeutic Plasmid DNA Encoding for Pro-Inflammatory Cytokine Interleukin-12

    Get PDF
    Ample evidence exists on the role of interleukin-12 (IL-12) in the response against many pathogens, as well as on its remarkable antitumor properties. However, the unexpected toxicity and disappointing results in some clinical trials are prompting the design of new strategies and/or vectors for IL-12 delivery. This study was conceived to further endorse the use of gemini cationic lipids (GCLs) in combination with zwitterionic helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphatidyl ethanol amine) as nanovectors for the insertion of plasmid DNA encoding for IL-12 (pCMV-IL12) into cells. Optimal GCL formulations previously reported by us were selected for IL-12-based biophysical experiments. In vitro studies demonstrated efficient pCMV-IL12 transfection by GCLs with comparable or superior cytokine levels than those obtained with commercial control Lipofectamine2000*. Furthermore, the nanovectors did not present significant toxicity, showing high cell viability values. The proteins adsorbed on the nanovector surface were found to be mostly lipoproteins and serum albumin, which are both beneficial to increase the blood circulation time. These outstanding results are accompanied by an initial physicochemical characterization to confirm DNA compaction and protection by the lipid mixture. Although further studies would be necessary, the present GCLs exhibit promising characteristics as candidates for pCMV-IL12 transfection in future in vivo applications

    CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS

    Get PDF
    Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations

    Purified Smc5/6 complex exhibits DNA substrate recognition and compaction

    Get PDF
    Eukaryotic SMC complexes, cohesin, condensin, and Smc5/6, use ATP hydrolysis to power a plethora of functions requiring organization and restructuring of eukaryotic chromosomes in interphase and during mitosis. The Smc5/6 mechanism of action and its activity on DNA are largely unknown. Here we purified the budding yeast Smc5/6 holocomplex and characterized its core biochemical and biophysical activities. Purified Smc5/6 exhibits DNA-dependent ATP hydrolysis and SUMO E3 ligase activity. We show that Smc5/6 binds DNA topologically with affinity for supercoiled and catenated DNA templates. Employing single-molecule assays to analyze the functional and dynamic characteristics of Smc5/6 bound to DNA, we show that Smc5/6 locks DNA plectonemes and can compact DNA in an ATP-dependent manner. These results demonstrate that the Smc5/6 complex recognizes DNA tertiary structures involving juxtaposed helices and might modulate DNA topology by plectoneme stabilization and local compaction.The work in the Aragon laboratory was supported by a Wellcome Trust Senior Investigator award to L.A. (100955, “Functional dissection of mitotic chromatin”) and the London Institute of Medical Research (LMS), which receives its core funding from the UK Medical Research Council (MC-A652-5PY00). F.M.-H. acknowledges support from the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Program (grant agreement 681299). Work in the Moreno-Herrero laboratory was also supported by Spanish Ministry of Economy and Competitiveness grant BFU2017-83794-P (AEI/FEDER, UE to F.M.-H.) and Comunidad de Madrid grants Tec4Bio – S2018/NMT-4443 and NanoBioCancer – Y2018/BIO-4747 (to F.M.-H.). Work in the J.T.-R. lab was supported by grants BFU2015-71308-P and PGC2018-097796-B-I00 from the Ministerio de Ciencia, Innovación y Universidades and grant 2017-SGR-569 from AGAUR-Generalitat de Catalunya. The IRBLLEIDA Institute is part of the CERCA Programme-Generalitat de Catalunya

    Molecular architecture and oligomerization of Candida glabrata Cdc13 underpin its telomeric DNA-binding and unfolding activity

    Get PDF
    The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.Agencia Estatal de Investigacion [AEI/10.13039/5011000 ´ 11 033]; Ministerio de Ciencia e Innovacion, and co-´ funded by the European Regional Development Fund(ERDF-UE) [PID2020-114429RB-I00 to O.L., PID2020-112998GB-100 to F.M.-H]; Autonomous Region of Madrid and co-funded by the European Social Fund and the European Regional Development Fund [Y2018/BIO4747 and P2018/NMT4443 to O.L. and F.M.-H.]; National Institute of Health Carlos III to CNIO; J.R.L.O. and O.N. acknowledge support from the Molecular Interactions Facility at the CIB-CSIC; N.G.-R. was supported by a Boehringer Ingelheim Fonds PhD fellowship; N.F.L. is funded by NIH [GM107287]. Funding for open access charge: Agencia Estatal de Investigacion [AEI ´ /10.13039/501100011 033]; Ministerio de Ciencia e Innovacion, co-funded by the Eu-ropean Regional Development Fund (ERDF) [PID2020-114429RB-I00].Peer reviewe

    Long Noncoding RNA NIHCOLE Promotes Ligation Efficiency of DNA Double-Strand Breaks in Hepatocellular Carcinoma

    Get PDF
    [Abstract] Long noncoding RNAs (lncRNA) are emerging as key players in cancer as parts of poorly understood molecular mechanisms. Here, we investigated lncRNAs that play a role in hepatocellular carcinoma (HCC) and identified NIHCOLE, a novel lncRNA induced in HCC with oncogenic potential and a role in the ligation efficiency of DNA double-stranded breaks (DSB). NIHCOLE expression was associated with poor prognosis and survival of HCC patients. Depletion of NIHCOLE from HCC cells led to impaired proliferation and increased apoptosis. NIHCOLE deficiency led to accumulation of DNA damage due to a specific decrease in the activity of the nonhomologous end-joining (NHEJ) pathway of DSB repair. DNA damage induction in NIHCOLE-depleted cells further decreased HCC cell growth. NIHCOLE was associated with DSB markers and recruited several molecules of the Ku70/Ku80 heterodimer. Further, NIHCOLE putative structural domains supported stable multimeric complexes formed by several NHEJ factors including Ku70/80, APLF, XRCC4, and DNA ligase IV. NHEJ reconstitution assays showed that NIHCOLE promoted the ligation efficiency of blunt-ended DSBs. Collectively, these data show that NIHCOLE serves as a scaffold and facilitator of NHEJ machinery and confers an advantage to HCC cells, which could be exploited as a targetable vulnerability.[Significance] This study characterizes the role of lncRNA NIHCOLE in DNA repair and cellular fitness in HCC, thus implicating it as a therapeutic target.This work was supported by the European FEDER funding (to the activities of the groups directed by P. Fortes, O. Llorca, and F. Moreno-Herrero) and grants from the Ministry of Economy and Competitiveness [SAF2015-70971-R to P. Fortes and BFU2017-83794-P (AEI/FEDER, UE) to F. Moreno-Herrero)]; MCIU/AEI/FEDER/UE (RTI2018-101759-B-I00 to P. Fortes), NIH program (CA92584 to S.P. Lees-Miller), Ligue National Contre le Cancer, Équipe Labellisée and ITMO Cancer: Consortium HETCOLI (to J. Zucman-Rossi), NIH program (P01CA092584 to G. Williams), NSERC (RGPIN-2018-04327 to G. Williams), and CFI (RCP-18-023-SEG to G. Williams), Gobierno de Navarra (33/2015 to P. Fortes), Scientific Foundation of the Spanish Association Against Cancer (AECC IDEAS20169FORT to P. Fortes); Fondo de Investigación Sanitaria (PI19/00742 to B. Sangro), financed by the National Institute of Health Carlos III and FEDER. CNIO and CIBERehd are funded by the National Institute of Health Carlos III. J.P. Unfried was a recipient of a University of Navarra's Asociación de Amigos fellowship. L. Prats-Mari is a recipient of a PFIS fellowship (FI20/00074) by the National Institute of Health Carlos III and FSE "Investing in Your Future." This work was also funded by grants from the Autonomous Region of Madrid (Tec4Bio—S2018/NMT-4443 and NanoBioCancer—Y2018/BIO-4747 to O. Llorca and F. Moreno-Herrero) and co-funded by the European Social Fund. F. Moreno-Herrero acknowledges support from the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Program (grant agreement 681299). The GTEx Project was supported by the NIH and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.Peer reviewe

    Papel del módulo carboxi-terminal de las óxido nítrico sintasas en la regulación de la síntesis de ·NO : caracterización del receptor nuclear E75, un sensor de óxido nítrico

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Departamento de Bioquímica y Biología Molecular I, leída el 18-07-2013Depto. de Bioquímica y Biología MolecularFac. de Ciencias QuímicasTRUEunpu
    corecore