871 research outputs found
Conduction States with Vanishing Dimerization in Pt Nanowires on Ge(001) Observed with Scanning Tunneling Microscopy
The low-energy electronic properties of one-dimensional nanowires formed by
Pt atoms on Ge(001) are studied with scanning tunneling microscopy down to the
millivolt-regime. The chain structure exhibits various dimerized elements at
high tunneling bias, indicative of a substrate bonding origin rather than a
charge density wave. Unexpectedly, this dimerization becomes vanishingly small
when imaging energy windows close to the Fermi level with adequately low
tunneling currents. Evenly spaced nanowire atoms emerge which are found to
represent conduction states. Implications for the metallicity of the chains are
discussed.Comment: 4 pages, 4 figure
Proving Type Class Laws for Haskell
Type classes in Haskell are used to implement ad-hoc polymorphism, i.e. a way
to ensure both to the programmer and the compiler that a set of functions are
defined for a specific data type. All instances of such type classes are
expected to behave in a certain way and satisfy laws associated with the
respective class. These are however typically just stated in comments and as
such, there is no real way to enforce that they hold. In this paper we describe
a system which allows the user to write down type class laws which are then
automatically instantiated and sent to an inductive theorem prover when
declaring a new instance of a type class.Comment: Presented at the Symposium for Trends in Functional Programming, 201
Photoemission of a doped Mott insulator: spectral weight transfer and qualitative Mott-Hubbard description
The spectral weight evolution of the low-dimensional Mott insulator TiOCl
upon alkali-metal dosing has been studied by photoelectron spectroscopy. We
observe a spectral weight transfer between the lower Hubbard band and an
additional peak upon electron-doping, in line with quantitative expectations in
the atomic limit for changing the number of singly and doubly occupied sites.
This observation is an unconditional hallmark of correlated bands and has not
been reported before. In contrast, the absence of a metallic quasiparticle peak
can be traced back to a simple one-particle effect.Comment: 4 pages, 4 figures, related theoretical work can be found in
arXiv:0905.1276; shortene
Strictly One-Dimensional Electron System in Au Chains on Ge(001) Revealed By Photoelectron K-Space Mapping
Atomic nanowires formed by Au on Ge(001) are scrutinized for the band
topology of the conduction electron system by k-resolved photoemission. Two
metallic electron pockets are observed. Their Fermi surface sheets form
straight lines without undulations perpendicular to the chains within
experimental uncertainty. The electrons hence emerge as strictly confined to
one dimension. Moreover, the system is stable against a Peierls distortion down
to 10 K, lending itself for studies of the spectral function. Indications for
unusually low spectral weight at the chemical potential are discussed.Comment: 4 pages, 4 figures - revised version with added Fig. 2e) and
additional reference
Finding Finite Models in Multi-Sorted First-Order Logic
This work extends the existing MACE-style finite model finding approach to
multi-sorted first order logic. This existing approach iteratively assumes
increasing domain sizes and encodes the related ground problem as a SAT
problem. When moving to the multi-sorted setting each sort may have a different
domain size, leading to an explosion in the search space. This paper focusses
on methods to tame that search space. The key approach adds additional
information to the SAT encoding to suggest which domains should be grown.
Evaluation of an implementation of techniques in the Vampire theorem prover
shows that they dramatically reduce the search space and that this is an
effective approach to find finite models in multi-sorted first order logic.Comment: SAT 201
- …