706 research outputs found
Hipster: Integrating Theory Exploration in a Proof Assistant
This paper describes Hipster, a system integrating theory exploration with
the proof assistant Isabelle/HOL. Theory exploration is a technique for
automatically discovering new interesting lemmas in a given theory development.
Hipster can be used in two main modes. The first is exploratory mode, used for
automatically generating basic lemmas about a given set of datatypes and
functions in a new theory development. The second is proof mode, used in a
particular proof attempt, trying to discover the missing lemmas which would
allow the current goal to be proved. Hipster's proof mode complements and
boosts existing proof automation techniques that rely on automatically
selecting existing lemmas, by inventing new lemmas that need induction to be
proved. We show example uses of both modes
Фотографія як вид мистецтва
Фотографія - це найдемократичніший вид мистецтва.
Історія фотографії розпочалася близько 1816 року, коли Джезеф Нісефор Ньєпс винайшов спосіб отримання зображень предметів за допомогою камери-обскури. Першу в історії фотографію "вид з вікна" він отримав у 1826 році. Весь подальший розвиток фотографії відбувався в напрямі отримання більш досконалих знімків.
При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/3300
Encoding monomorphic and polymorphic types
Most automatic theorem provers are restricted to untyped logics, and existing translations from typed logics are bulky or unsound. Recent research proposes monotonicity as a means to remove some clutter. Here we pursue this approach systematically, analysing formally a variety of encodings that further improve on efficiency while retaining soundness and completeness. We extend the approach to rank-1 polymorphism and present alternative schemes that lighten
the translation of polymorphic symbols based on the novel notion of “cover”. The new encodings are implemented, and partly proved correct, in Isabelle/HOL. Our evaluation finds them vastly superior to previous schemes
Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy
The one-dimensional reconstruction of Au/Ge(001) was investigated by means of
autocorrelation functions from surface x-ray diffraction (SXRD) and scanning
tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson
map are substantiated by results from STM. The Au coverage, recently determined
to be 3/4 of a monolayer of gold, together with SXRD leads to three
non-equivalent positions for Au within the c(8x2) unit cell. Combined with
structural information from STM topography and line profiling, two building
blocks are identified: Au-Ge hetero-dimers within the top wire architecture and
Au homo-dimers within the trenches. The incorporation of both components is
discussed using density functional theory and model based Patterson maps by
substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure
Two-Spinon and Orbital Excitations of the Spin-Peierls System TiOCl
We combine high-resolution resonant inelastic x-ray scattering with cluster
calculations utilizing a recently derived effective magnetic scattering
operator to analyze the polarization, excitation energy, and momentum dependent
excitation spectrum of the low-dimensional quantum magnet TiOCl in the range
expected for orbital and magnetic excitations (0 - 2.5 eV). Ti 3d orbital
excitations yield complete information on the temperature-dependent
crystal-field splitting. In the spin-Peierls phase we observe a dispersive
two-spinon excitation and estimate the inter- and intra-dimer magnetic exchange
coupling from a comparison to cluster calculations
Muon-spin relaxation measurements on the dimerized spin-1/2 chains NaTiSi2O6 and TiOCl
We report muon spin relaxation (muSR) and magnetic susceptibility
investigations of two Ti3+ chain compounds which each exhibit a spin gap at low
temperature, NaTiSi2O6 and TiOCl. From these we conclude that the spin gap in
NaTiSi2O6 is temperature independent, with a value of 2*Delta=660(50)K, arising
from orbital ordering at Too = 210K; the associated structural fluctuations
activate the muon spin relaxation rate up to temperatures above 270K. In TiOCl
we find thermally activated spin fluctuations corresponding to a spin gap
2*Delta=420(40)K below Tc1=67K. We also compare the methods used to extract the
spin gap and the concentration of free spins within the samples from muSR and
magnetic susceptibility data.Comment: 4 pages, 3 figure
Terahertz Conductivity at the Verwey Transition in Magnetite
The complex conductivity at the (Verwey) metal-insulator transition in
Fe_3O_4 has been investigated at THz and infrared frequencies. In the
insulating state, both the dynamic conductivity and the dielectric constant
reveal a power-law frequency dependence, the characteristic feature of hopping
conduction of localized charge carriers. The hopping process is limited to low
frequencies only, and a cutoff frequency nu_1 ~ 8 meV must be introduced for a
self-consistent description. On heating through the Verwey transition the
low-frequency dielectric constant abruptly decreases and becomes negative.
Together with the conductivity spectra this indicates a formation of a narrow
Drude-peak with a characteristic scattering rate of about 5 meV containing only
a small fraction of the available charge carriers. The spectra can be explained
assuming the transformation of the spectral weight from the hopping process to
the free-carrier conductivity. These results support an interpretation of
Verwey transition in magnetite as an insulator-semiconductor transition with
structure-induced changes in activation energy.Comment: 6 Pages, 3 Figure
Raman and fluorescence contributions to resonant inelastic soft x-ray scattering on LaAlO/SrTiO heterostructures
We present a detailed study of the Ti 3 carriers at the interface of
LaAlO/SrTiO heterostructures by high-resolution resonant inelastic soft
x-ray scattering (RIXS), with special focus on the roles of overlayer thickness
and oxygen vacancies. Our measurements show the existence of interfacial Ti
3 electrons already below the critical thickness for conductivity and an
increase of the total interface charge up to a LaAlO overlayer thickness of
6 unit cells before it levels out. By comparing stoichiometric and oxygen
deficient samples we observe strong Ti 3 charge carrier doping by oxygen
vacancies. The RIXS data combined with photoelectron spectroscopy and transport
measurements indicate the simultaneous presence of localized and itinerant
charge carriers. However, it is demonstrated that the relative amount of
localized and itinerant Ti electrons in the ground state cannot be deduced
from the relative intensities of the Raman and fluorescence peaks in excitation
energy dependent RIXS measurements, in contrast to previous interpretations.
Rather, we attribute the observation of either the Raman or the fluorescence
signal to the spatial extension of the intermediate state reached in the RIXS
excitation process.Comment: 9 pages, 6 figure
- …