53 research outputs found

    Conspicuity and muscle-invasiveness assessment for bladder cancer using VI-RADS: a multi-reader, contrast-free MRI study to determine optimal b-values for diffusion-weighted imaging

    Get PDF
    To (1) compare bladder cancer (BC) muscle invasiveness among three b-values using a contrast-free approach based on Vesical Imaging-Reporting and Data System (VI-RADS), to (2) determine if muscle-invasiveness assessment is affected by the reader experience, and to (3) compare BC conspicuity among three b-values, qualitatively and quantitatively

    Wnt/β-Catenin Signaling Pathway Is a Direct Enhancer of Thyroid Transcription Factor-1 in Human Papillary Thyroid Carcinoma Cells

    Get PDF
    The Wnt/β-catenin signaling pathway is involved in the normal development of thyroid gland, but its disregulation provokes the appearance of several types of cancers, including papillary thyroid carcinomas (PTC) which are the most common thyroid tumours. The follow-up of PTC patients is based on the monitoring of serum thyroglobulin levels which is regulated by the thyroid transcription factor 1 (TTF-1): a tissue-specific transcription factor essential for the differentiation of the thyroid. We investigated whether the Wnt/β-catenin pathway might regulate TTF-1 expression in a human PTC model and examined the molecular mechanisms underlying this regulation. Immunofluorescence analysis, real time RT-PCR and Western blot studies revealed that TTF-1 as well as the major Wnt pathway components are co-expressed in TPC-1 cells and human PTC tumours. Knocking-down the Wnt/β-catenin components by siRNAs inhibited both TTF-1 transcript and protein expression, while mimicking the activation of Wnt signaling by lithium chloride induced TTF-1 gene and protein expression. Functional promoter studies and ChIP analysis showed that the Wnt/β-catenin pathway exerts its effect by means of the binding of β-catenin to TCF/LEF transcription factors on the level of an active TCF/LEF response element at [−798, −792 bp] in TTF-1 promoter. In conclusion, we demonstrated that the Wnt/β-catenin pathway is a direct and forward driver of the TTF-1 expression. The localization of TCF-4 and TTF-1 in the same area of PTC tissues might be of clinical relevance, and justifies further examination of these factors in the papillary thyroid cancers follow-up

    TTF-1 Action on the Transcriptional Regulation of Cyclooxygenase-2 Gene in the Rat Brain

    Get PDF
    We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain

    Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

    Get PDF
    The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown.To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation.This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies
    • …
    corecore