511 research outputs found
Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland
Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0700-7) contains supplementary material, which is available to authorized users
Shifts in the architecture of the Nationwide Health Information Network
In the midst of a US $30 billion USD investment in the Nationwide Health Information Network (NwHIN) and electronic health records systems, a significant change in the architecture of the NwHIN is taking place. Prior to 2010, the focus of information exchange in the NwHIN was the Regional Health Information Organization (RHIO). Since 2010, the Office of the National Coordinator (ONC) has been sponsoring policies that promote an internet-like architecture that encourages point to-point information exchange and private health information exchange networks. The net effect of these activities is to undercut the limited business model for RHIOs, decreasing the likelihood of their success, while making the NwHIN dependent on nascent technologies for community level functions such as record locator services. These changes may impact the health of patients and communities. Independent, scientifically focused debate is needed on the wisdom of ONC's proposed changes in its strategy for the NwHIN
Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.
We present a novel method for the identification of sets of mutually exclusive gene alterations in a given set of genomic profiles. We scan the groups of genes with a common downstream effect on the signaling network, using a mutual exclusivity criterion that ensures that each gene in the group significantly contributes to the mutual exclusivity pattern. We test the method on all available TCGA cancer genomics datasets, and detect multiple previously unreported alterations that show significant mutual exclusivity and are likely to be driver events
Comparison of computational methods for the identification of topologically associating domains.
Chromatin folding gives rise to structural elements among which are clusters of densely interacting DNA regions termed topologically associating domains (TADs). TADs have been characterized across multiple species, tissue types, and differentiation stages, sometimes in association with regulation of biological functions. The reliability and reproducibility of these findings are intrinsically related with the correct identification of these domains from high-throughput chromatin conformation capture (Hi-C) experiments.
Here, we test and compare 22 computational methods to identify TADs across 20 different conditions. We find that TAD sizes and numbers vary significantly among callers and data resolutions, challenging the definition of an average TAD size, but strengthening the hypothesis that TADs are hierarchically organized domains, rather than disjoint structural elements. Performances of these methods differ based on data resolution and normalization strategy, but a core set of TAD callers consistently retrieve reproducible domains, even at low sequencing depths, that are enriched for TAD-associated biological features.
This study provides a reference for the analysis of chromatin domains from Hi-C experiments and useful guidelines for choosing a suitable approach based on the experimental design, available data, and biological question of interest
Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes.
Chromatin compartmentalization reflects biological activity. However, inference of chromatin sub-compartments and compartment domains from chromosome conformation capture (Hi-C) experiments is limited by data resolution. As a result, these have been characterized only in a few cell types and systematic comparisons across multiple tissues and conditions are missing. Here, we present Calder, an algorithmic approach that enables the identification of multi-scale sub-compartments at variable data resolution. Calder allows to infer and compare chromatin sub-compartments and compartment domains in >100 cell lines. Our results reveal sub-compartments enriched for poised chromatin states and undergoing spatial repositioning during lineage differentiation and oncogenic transformation
Whole-genome doubling drives oncogenic loss of chromatin segregation.
Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies <sup>1-8</sup> . However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer
The risk stratification of adverse neonatal outcomes in women with gestational diabetes (STRONG) study
Aims: To assess the risk of adverse neonatal outcomes in women with gestational diabetes (GDM) by identifying subgroups of women at higher risk to recognize the characteristics most associated with an excess of risk. Methods: Observational, retrospective, multicenter study involving consecutive women with GDM. To identify distinct and homogeneous subgroups of women at a higher risk, the RECursive Partitioning and AMalgamation (RECPAM) method was used. Overall, 2736 pregnancies complicated by GDM were analyzed. The main outcome measure was the occurrence of adverse neonatal outcomes in pregnancies complicated by GDM. Results: Among study participants (median age 36.8 years, pre-gestational BMI 24.8 kg/m2), six miscarriages, one neonatal death, but no maternal death was recorded. The occurrence of the cumulative adverse outcome (OR 2.48, 95% CI 1.59–3.87), large for gestational age (OR 3.99, 95% CI 2.40–6.63), fetal malformation (OR 2.66, 95% CI 1.00–7.18), and respiratory distress (OR 4.33, 95% CI 1.33–14.12) was associated with previous macrosomia. Large for gestational age was also associated with obesity (OR 1.46, 95% CI 1.00–2.15). Small for gestational age was associated with first trimester glucose levels (OR 1.96, 95% CI 1.04–3.69). Neonatal hypoglycemia was associated with overweight (OR 1.52, 95% CI 1.02–2.27) and obesity (OR 1.62, 95% CI 1.04–2.51). The RECPAM analysis identified high-risk subgroups mainly characterized by high pre-pregnancy BMI (OR 1.68, 95% CI 1.21–2.33 for obese; OR 1.38 95% CI 1.03–1.87 for overweight). Conclusions: A deep investigation on the factors associated with adverse neonatal outcomes requires a risk stratification. In particular, great attention must be paid to the prevention and treatment of obesity
Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme
We discuss the numerical solution of nonlinear parabolic partial differential
equations, exhibiting finite speed of propagation, via a strongly implicit
finite-difference scheme with formal truncation error . Our application of interest is the spreading of
viscous gravity currents in the study of which these type of differential
equations arise. Viscous gravity currents are low Reynolds number (viscous
forces dominate inertial forces) flow phenomena in which a dense, viscous fluid
displaces a lighter (usually immiscible) fluid. The fluids may be confined by
the sidewalls of a channel or propagate in an unconfined two-dimensional (or
axisymmetric three-dimensional) geometry. Under the lubrication approximation,
the mathematical description of the spreading of these fluids reduces to
solving the so-called thin-film equation for the current's shape . To
solve such nonlinear parabolic equations we propose a finite-difference scheme
based on the Crank--Nicolson idea. We implement the scheme for problems
involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or
spherically-symmetric three-dimensional currents) on an equispaced but
staggered grid. We benchmark the scheme against analytical solutions and
highlight its strong numerical stability by specifically considering the
spreading of non-Newtonian power-law fluids in a variable-width confined
channel-like geometry (a "Hele-Shaw cell") subject to a given mass
conservation/balance constraint. We show that this constraint can be
implemented by re-expressing it as nonlinear flux boundary conditions on the
domain's endpoints. Then, we show numerically that the scheme achieves its full
second-order accuracy in space and time. We also highlight through numerical
simulations how the proposed scheme accurately respects the mass
conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements
and corrections; to appear as a contribution in "Applied Wave Mathematics II
- …