7 research outputs found

    Formation and electrochemical properties of ternary mesoporous carbon, coordination C60Pd polymer and palladium nanoparticle composites

    No full text
    This work describes the preparation and properties of composites based on spherical mesoporous carbon nanoparticles and fullerene-coordinated C60Pd polymer. The composite material was synthesized under a multistep chemical procedure. In the first step, mesoporous carbon nanoparticles were synthesized via a template-assisted method. Next, the C60 fullerene was incorporated into mesoporous carbon pores, and then the polymerization process was carried out in a solution containing a Pd(0) complex. The composite material is electroactive in the negative potential range due to the faradaic reduction process of C60 moieties. At less negative potentials, a high capacity current related to the presence of mesoporous carbon is observed. Under voltammetric conditions, this system exhibits a high capacitance equal to 359 F g-1 in the potential range of C60Pd reduction at 0.1 V s- 1. This value is 3 times higher than that of the pure polymeric material. Moreover, the composite system is more stable than pristine C60Pd. Capacitance retention, in this case, is approximately 30% higher than that of the C60Pd polymer after 6000 charging/discharging cycles at current density of 6.7 A g-1

    The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Get PDF
    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection

    Stavudine, Didanosine, and Zalcitabine

    No full text

    Renal Drug Transporters and Drug Interactions.

    No full text
    Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers

    What do drug transporters really do?

    No full text

    Renal Drug Transporters and Drug Interactions

    No full text
    corecore