353 research outputs found
Numerical experiments on turbulent entrainment and mixing of scalars
Numerical experiments on the turbulent entrainment and mixing of scalars in a incompressible flow have been performed. These simulations are based on a scale decomposition of the velocity field, thus allowing the establishment from a dynamic point of view of the evolution of scalar fields under the separate action of large-scale coherent motions and small-scale fluctuations. The turbulent spectrum can be split into active and inactive flow structures. The large-scale engulfment phenomena actively prescribe the mixing velocity by amplifying inertial fluxes and by setting the area and the fluctuating geometry of the scalar interface. On the contrary, small-scale isotropic nibbling phenomena are essentially inactive in the mixing process. It is found that the inertial mechanisms initiate the process of entrainment at large scales to be finally processed by scalar diffusion at the molecular level. This last stage does not prescribe the amount of mixing but adapts itself to the conditions imposed by the coherent anisotropic motion at large scales. The present results may have strong repercussions for the theoretical approach to scalar mixing, as anticipated here by simple heuristic arguments which are shown able to reveal the rich dynamics of the process. Interesting repercussions are also envisaged for turbulence closures, in particular for large-eddy simulation approaches where only the large scales of the velocity field are resolved
Numerical experiments on scalar transport and mixing in turbulent boundary layers
In this work, we present numerical experiments aimed at dynamically establishing the separate role of the inner and outer cycles on the scalar transport in the configuration of a temporally evolving boundary layer. The experiments are based on the study of the evolution of passive scalars driven by velocity fields where inner and outer cycles are alternately suppressed. Two different approaches are implemented. In the first, the discrimination between inner and outer cycle activities is based on the scale dimension of the involved motions. The second instead, discriminates on the basis of the distance from the wall of the turbulent motions. The two approaches depict the same scenario. Both the inner and outer cycles appear to be autonomous and, in a sense, independent, since their dynamics remain qualitatively unaltered despite facing two different conditions. The outer cycle faces a free boundary at the top and simply rescales according to what is supplied by the inner cycle. The inner cycle, on the other hand, resides between the wall and the outer region. As a result, the reduction of the scalar fluxes in the outer region due to the suppression of the outer cycle causes a damping in the near-wall region activities
On wind-wave interaction phenomena at low Reynolds numbers
After decades of research efforts, wind-wave interaction mechanisms have been recognized as extremely elusive. The reason is the complex nature of the problem, which combines complex coupling mechanisms between turbulent wind and water waves with the presence of multiple governing parameters, such as the friction Reynolds number of the wind, the water depth and the wind fetch. As shown unequivocally here, the use of suitable flow settings allows us to reduce the complex problem of wind-wave interaction to its essential features, mainly as a function of the sole friction Reynolds number of the wind. The resulting numerical solution allows us to study the interactions between water and air layers with their own fluid properties, and to unveil very interesting features, such as an oblique wave pattern travelling upstream and a wave-induced Stokes sublayer. The latter is responsible for a drag reduction mechanism in the turbulent wind. Despite the simulated flow conditions being far from the intense events occurring at the ocean-atmosphere interface, the basic flow phenomena unveiled here may explain some experimental evidence in wind-wave problems. Among other things, the wave-induced Stokes sublayer may shed light on the large scatter of the drag coefficient data in field measurements where swell waves of arbitrary directions are often present. Hence the present results and the developed approach pave the way for the understanding and modelling of the surface fluxes at the ocean-atmosphere interface, which are of overwhelming importance for climate science
Direct Numerical Simulation of natural, mixed and forced convection in liquid metals: selected results
Selected results of three Direct Numerical Simulations are presented, on relevant test cases for the thermal hydraulics of liquid–metal-cooled nuclear reactors, encompassing a wide spectrum of turbulent convection regimes. The first test case is a Rayleigh-Bénard cell at a Grashof number Gr=5×107, representative of the conditions in the unstably stratified layer of coolant in a reactor pool in both standard operating conditions and emergency situations, e.g. shutdown of the cooling system. The second case is the mixed convection in a cold-hot–cold triple jet configuration, representative of liquid streams exiting from the core into the pool, and relevant for the modeling of thermal striping and thermal fatigue phenomena on the vessel containment walls. The third case is the fully-developed flow in a vertical bare rod bundle with triangular arrangement and a pitch-to-diameter ratio P/D=1.4, in both forced and mixed convection conditions. These regimes respectively represent normal operation or decay heat removal conditions in reactor cores. The availability of these numerical databases will allows for an in-depth analysis of the turbulent flow and heat transfer in liquid metals under different convection regimes, and is also relevant for the development, calibration and validation of turbulent heat transfer models
Impact of Drag Reduction Control on Energy Box of a Fully Developed Turbulent Channel Flow
We introduce the Constant Power Input (CPI) concept to clarify how a drag reduction control a ects energy budget of a fully developed turbulent channel ows. The entire kinetic energy is decomposed into the mean and uctuating components, and the total dissipation is accordingly divided into the dissipation of the mean led and the turbulent dissipation. The CPI condition is essential in the present study, since it strictly restricts the amount of power applied to the ow system. This allows us to identify how each ow control strategy changes the energy ows between each component and the viscous dissipation. Ultimately, if we succeed in suppressing all turbulence, the turbulent dissipation should vanish and the power applied to the ow system should be dissipated only by the dissipation of the mean velocity, which should have a parabolic pro le. Our fundamental question in the present study is whether there exists unique relationship between the changes in the turbulent dissipation and the resultant drag reduction e ect. In order to provide the de nite an- swer to this question, we introduce triple decomposition of the velocity eld, and validate our approach by considering two di erent ow control strategies
Cascades and wall-normal fluxes in turbulent channel flows
The present work describes the multidimensional behaviour of scale-energy production, transfer and dissipation in wall-bounded turbulent flows. This approach allows us to understand the cascade mechanisms by which scale energy is transmitted scale-by-scale among different regions of the flow. Two driving mechanisms are identified. A strong scale-energy source in the buffer layer related to the near-wall cycle and an outer scale-energy source associated with an outer turbulent cycle in the overlap layer. These two sourcing mechanisms lead to a complex redistribution of scale energy where spatially evolving reverse and forward cascades coexist. From a hierarchy of spanwise scales in the near-wall region generated through a reverse cascade and local turbulent generation processes, scale energy is transferred towards the bulk, flowing through the attached scales of motion, while among the detached scales it converges towards small scales, still ascending towards the channel centre. The attached scales of wall-bounded turbulence are then recognized to sustain a spatial reverse cascade process towards the bulk flow. On the other hand, the detached scales are involved in a direct forward cascade process that links the scale-energy excess at large attached scales with dissipation at the smaller scales of motion located further away from the wall. The unexpected behaviour of the fluxes and of the turbulent generation mechanisms may have strong repercussions on both theoretical and modelling approaches to wall turbulence. Indeed, actual turbulent flows are shown here to have a much richer physics with respect to the classical notion of turbulent cascade, where anisotropic production and inhomogeneous fluxes lead to a complex redistribution of energy where a spatial reverse cascade plays a central role
A priori and a posteriori analysis of the flow around a rectangular cylinder
The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows
Structure of turbulence in temporal planar jets
A detailed analysis of the structure of turbulence in a temporal planar turbulent jet is reported. Instantaneous snapshots of the flow and three-dimensional spatial correlation functions are considered. It is found that the flow is characterized by large-scale spanwise vortices whose motion is felt in the entire flow field. Superimposed to this large-scale motion, a hierarchy of turbulent structures is present. The most coherent ones take the form of quasi-streamwise vortices and high and low streamwise velocity streaks. The topology of these interacting structures is analyzed by quantitatively addressing their shape and size in the different flow regions. Such information is recognized to be relevant for a structural description of the otherwise disorganized motion in turbulent free-shear flows and can be used for the assessment of models based on coherent structure assumptions. Finally, the resulting scenario provides a phenomenological description of the elementary processes at the basis of turbulence in free-shear flows
- …