2,145 research outputs found

    The Fourth SM Family Neutrino at Future Linear Colliders

    Full text link
    It is known that Flavor Democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three family fermions Flavor Democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton CKM matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac (ν4)(\nu_{4}) and Majorana (N1)(N_{1}) neutrinos at future linear colliders with s=500\sqrt{s}=500 GeV, 1 TeV and 3 TeV are considered. The cross section for the process e+e−→ν4ν4ˉ(N1N1)e^{+}e^{-}\to\nu_{4}\bar {\nu_{4}}(N_{1}N_{1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels (ν4(N1)→μ±W∓)(\nu_{4}(N_{1})\to\mu^{\pm}W^{\mp}) provide cleanest signature at e+e−e^{+}e^{-} colliders. Meanwhile, in our parametrization this channel is dominant. WW bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example we consider the production of 200 GeV mass fourth family neutrinos at s=500\sqrt{s}=500 GeV linear colliders by taking into account di-muon plus four-jet events as signatures.Comment: 16 pages, 3 figures, 10 table

    Application of the Asymptotic Iteration Method to a Perturbed Coulomb Model

    Full text link
    We show that the asymptotic iteration method converges and yields accurate energies for a perturbed Coulomb model. We also discuss alternative perturbation approaches to that model.Comment: 9 pages, 2 figures, 1 tabl

    Spectral characteristics for a spherically confined -1/r + br^2 potential

    Full text link
    We consider the analytical properties of the eigenspectrum generated by a class of central potentials given by V(r) = -a/r + br^2, b>0. In particular, scaling, monotonicity, and energy bounds are discussed. The potential V(r)V(r) is considered both in all space, and under the condition of spherical confinement inside an impenetrable spherical boundary of radius R. With the aid of the asymptotic iteration method, several exact analytic results are obtained which exhibit the parametric dependence of energy on a, b, and R, under certain constraints. More general spectral characteristics are identified by use of a combination of analytical properties and accurate numerical calculations of the energies, obtained by both the generalized pseudo-spectral method, and the asymptotic iteration method. The experimental significance of the results for both the free and confined potential V(r) cases are discussed.Comment: 16 pages, 4 figure

    Batch Sequencing and Cooperation

    Get PDF
    Game theoretic analysis of sequencing situations has been restricted to manufactur- ing systems which consist of machines that can process only one job at a time. However, in many manufacturing systems, operations are carried out by batch machines which can simultaneously process multiple jobs. This paper aims to extend the game theoretical approach to the cost allocation problems arising from sequencing situations on systems that consist of batch machines. We first consider sequencing situations with a single batch machine and analyze cooperative games arising from these situations. It is shown that these games are convex and an expression for the Shapley value of these games is provided. We also introduce an equal gain splitting rule for these sequencing situa- tions and provide an axiomatic characterization. Second, we analyze various aspects of flow-shop sequencing situations which consist of batch machines only. In particular, we provide two cases in which the cooperative game arising from the flow-shop sequencing situation is equal to the game arising from a sequencing situation that corresponds to one specific machine in the flow-shop.Sequencing situations;sequencing games;batch machines

    Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method

    Full text link
    For non-zero â„“\ell values, we present an analytical solution of the radial Schr\"{o}dinger equation for the rotating Morse potential using the Pekeris approximation within the framework of the Asymptotic Iteration Method. The bound state energy eigenvalues and corresponding wave functions are obtained for a number of diatomic molecules and the results are compared with the findings of the super-symmetry, the hypervirial perturbation, the Nikiforov-Uvarov, the variational, the shifted 1/N and the modified shifted 1/N expansion methods.Comment: 15 pages with 1 eps figure. accepted for publication in Journal of Physics A: Mathematical and Genera

    Criterion for polynomial solutions to a class of linear differential equation of second order

    Full text link
    We consider the differential equations y''=\lambda_0(x)y'+s_0(x)y, where \lambda_0(x), s_0(x) are C^{\infty}-functions. We prove (i) if the differential equation, has a polynomial solution of degree n >0, then \delta_n=\lambda_n s_{n-1}-\lambda_{n-1}s_n=0, where \lambda_{n}= \lambda_{n-1}^\prime+s_{n-1}+\lambda_0\lambda_{n-1}\hbox{and}\quad s_{n}=s_{n-1}^\prime+s_0\lambda_{k-1},\quad n=1,2,.... Conversely (ii) if \lambda_n\lambda_{n-1}\ne 0 and \delta_n=0, then the differential equation has a polynomial solution of degree at most n. We show that the classical differential equations of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second kind), Gegenbauer, and the Hypergeometric type, etc, obey this criterion. Further, we find the polynomial solutions for the generalized Hermite, Laguerre, Legendre and Chebyshev differential equations.Comment: 12 page

    Solvable Systems of Linear Differential Equations

    Full text link
    The asymptotic iteration method (AIM) is an iterative technique used to find exact and approximate solutions to second-order linear differential equations. In this work, we employed AIM to solve systems of two first-order linear differential equations. The termination criteria of AIM will be re-examined and the whole theory is re-worked in order to fit this new application. As a result of our investigation, an interesting connection between the solution of linear systems and the solution of Riccati equations is established. Further, new classes of exactly solvable systems of linear differential equations with variable coefficients are obtained. The method discussed allow to construct many solvable classes through a simple procedure.Comment: 13 page
    • …
    corecore